Abstract:
A method of installing a rotor on a nacelle (44) on a wind turbine generally includes providing a rotor hub counterweight assembly (10, 10′) which are rotated and lifted from a downtower location to an uptower location at which wind turbine blades (50, 52, 54) are progressively attached and the counterweights (14, 16), (14′, 16′) are progressively removed. The rotor hub and counterweight assembly (10, 10′) for use when installing a rotor on a wind turbine (46) generally includes a rotor hub (12) having first, second and third flanges (18, 20, 22), a first counterweight (14, 14′), a second counterweight (16, 16′), and a lifting apparatus connecting member (26, 26′). A lifting apparatus connecting member (26) is configured with at least two connection points (60, 62) being configured for allowing at least two of three operations including installation, rotating and lifting the rotor hub (12), and removal of the lifting apparatus connecting member (26′).
Abstract:
A method for mounting a blade root of a blade on a blade flange of a wind turbine rotor, the method comprising:—attaching a control line between a hold structure at the blade flange and the blade root;≤lifting the blade with a blade lifting crane while the blade root is guided towards the blade flange by use of said control line, and—connecting said blade root to said blade flange.
Abstract:
This application relates to tower segment handling methods and apparatus and, in particular, to methods and apparatus for handling segments of steel wind turbine towers. The wind turbine tower comprises a plurality of cylindrical vertical tower sections, which in the finished tower are mounted on top of one another. The vertical section of the tower has a longitudinal axis and comprises a plurality of wind turbine tower segments, the tower segments have vertical and horizontal edges and combine to form a complete vertical tower section by joining along their vertical edges. Adjacent vertical tower sections are joined to each other along the horizontal edges of the wind turbine tower segments. The tower segments are combined into a tower section using a flat roller bed on which the segments can be assembled. A method of assembling a tower section is discussed.
Abstract:
A method for mounting a rotor to a drive shaft of a wind turbine, the method comprising placing a hub on a surface, attaching a first, a second, and a third rotor blade to the hub to thereby make a rotor in situ. To protect the blades and to avoid fixed lifting lugs on the rotor, the method includes the step of wrapping a sling about each of the blades, attaching each sling to a fitting, lifting each fitting to thereby raise the rotor from the surface, and attaching the rotor to the drive shaft while the position and orientation of the rotor is controlled by the slings.
Abstract:
This application relates to hinged tower segments and transport methods, and particularly to methods and apparatus for transporting and storing hinged segments of steel wind turbine towers. The wind turbine tower comprises a plurality of cylindrical vertical tower sections, which in the finished tower are mounted on top of one another. The vertical section of the tower has a longitudinal axis and comprises a plurality of wind turbine tower segments, the tower segments have vertical and horizontal edges and combine to form a complete vertical tower section by joining along their edges. Adjacent vertical tower sections are joined to each other along the horizontal edges of the wind turbine tower segments. Hinges are secured between tower segments and the tower segments rotated about the hinged axis to make them suitable for transport or storage. A method of assembling a tower section is discussed.
Abstract:
The invention relates to a method for moving a wind turbine component, such as a wind turbine hub, from a transportation position to a wind turbine assembly position. The method comprises the steps of: attaching a handling unit to a structural part of the wind turbine component, operatively connecting the handling unit to a wire of a crane system, lifting the wind turbine component with the crane system to an assembly position of the wind turbine, the handling unit and the wind turbine component being suspended from a wire of the crane system, and rotating the wind turbine component with the handling unit during the lifting of the wind turbine component in order to orientate the wind turbine component for assembly. The invention also relates to a handling unit and a wind turbine hub and use hereof.
Abstract:
A method for mounting a blade root of a blade on a blade flange of a wind turbine rotor, the method comprising: attaching a control line between a hold structure at the blade flange and the blade root; lifting the blade with a blade lifting crane while the blade root is guided towards the blade flange by use of said control line, and connecting said blade root to said blade flange.
Abstract:
A method and a lifting arrangement for mounting a blade on a wind turbine rotor carried by a wind turbine structure. The method comprises providing a control line guide at the wind turbine structure, the control line guide forming a control line point configured to restrain the control line attaching the control line to the control line point; lifting the blade with an external blade lifting crane while a root end of the blade is guided towards the rotor by use of said control line restrained at said control line point, and connecting said blade to said rotor.
Abstract:
A wind turbine comprising a tower structure configured to hold a nacelle with a rotor and a parking structure for holding the rotor. To improve the ability to carry out maintenance and to allow easier assembly and disassembly of the wind turbine, the parking structure is configured to connect the rotor directly to the tower structure to thereby allow removal of the nacelle while the rotor remains fixed to the tower structure.
Abstract:
The invention relates to a method for lifting a component (1a, 1b) of a multirotor wind turbine (100) from an initial position to an operating position. The initial position is near a base (2a) of a tower structure (2) of the wind turbine (100) while the operating position is arranged at a distance from the tower structure (2), on a load carrying structure (3) connected to the tower structure (2) and extending away from the tower structure (2). By operating a first hoisting mechanism provided at or near a connecting point between the tower structure (2) and a load carrying structure (3), and a second hoisting mechanism provided at or near the operating position, the component (1a, 1b) is moved from the initial position to the operating position along a predetermined path. The component (1a, 1b) is finally mounted on the load carrying structure (3) at the operating position.