Abstract:
In a method of diarization of audio data, audio data is segmented into a plurality of utterances. Each utterance is represented as an utterance model representative of a plurality of feature vectors. The utterance models are clustered. A plurality of speaker models are constructed from the clustered utterance models. A hidden Markov model is constructed of the plurality of speaker models. A sequence of identified speaker models is decoded.
Abstract:
Disclosed herein are methods of diarizing audio data using first-pass blind diarization and second-pass blind diarization that generate speaker statistical models, wherein the first pass-blind diarization is on a per-frame basis and the second pass-blind diarization is on a per-word basis, and methods of creating acoustic signatures for a common speaker based only on the statistical models of the speakers in each audio session.
Abstract:
In a method of diarization of audio data, audio data is segmented into a plurality of utterances. Each utterance is represented as an utterance model representative of a plurality of feature vectors. The utterance models are clustered. A plurality of speaker models are constructed from the clustered utterance models. A hidden Markov model is constructed of the plurality of speaker models. A sequence of identified speaker models is decoded.
Abstract:
In a method of diarization of audio data, audio data is segmented into a plurality of utterances. Each utterance is represented as an utterance model representative of a plurality of feature vectors. The utterance models are clustered. A plurality of speaker models are constructed from the clustered utterance models. A hidden Markov model is constructed of the plurality of speaker models. A sequence of identified speaker models is decoded.
Abstract:
Disclosed herein are methods of diarizing audio data using first-pass blind diarization and second-pass blind diarization that generate speaker statistical models, wherein the first pass-blind diarization is on a per-frame basis and the second pass-blind diarization is on a per-word basis, and methods of creating acoustic signatures for a common speaker based only on the statistical models of the speakers in each audio session.
Abstract:
A method for expanding an initial ontology via processing of communication data, wherein the initial ontology is a structural representation of language elements comprising a set of entities, a set of terms, a set of term-entity associations, a set of entity-association rules, a set of abstract relations, and a set of relation instances. A method for extracting a set of significant phrases and a set of significant phrase co-occurrences from an input set of documents further includes utilizing the terms to identify relations within the training set of communication data, wherein a relation is a pair of terms that appear in proximity to one another.
Abstract:
Disclosed herein are methods of diarizing audio data using first-pass blind diarization and second-pass blind diarization that generate speaker statistical models, wherein the first pass-blind diarization is on a per-frame basis and the second pass-blind diarization is on a per-word basis, and methods of creating acoustic signatures for a common speaker based only on the statistical models of the speakers in each audio session.
Abstract:
Disclosed herein are methods of diarizing audio data using first-pass blind diarization and second-pass blind diarization that generate speaker statistical models, wherein the first pass-blind diarization is on a per-frame basis and the second pass-blind diarization is on a per-word basis, and methods of creating acoustic signatures for a common speaker based only on the statistical models of the speakers in each audio session.
Abstract:
Disclosed herein are methods of diarizing audio data using first-pass blind diarization and second-pass blind diarization that generate speaker statistical models, wherein the first pass-blind diarization is on a per-frame basis and the second pass-blind diarization is on a per-word basis, and methods of creating acoustic signatures for a common speaker based only on the statistical models of the speakers in each audio session.
Abstract:
The system and method of separating speakers in an audio file including obtaining an audio file. The audio file is transcribed into at least one text file by a transcription server. Homogenous speech segments are identified within the at least one text file. The audio file is segmented into homogenous audio segments that correspond to the identified homogenous speech segments. The homogenous audio segments of the audio file are separated into a first speaker audio file and second speaker audio file the first speaker audio file and the second speaker audio file are transcribed to produce a diarized transcript.