摘要:
The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing (71), of which an inlet-side, housing end is formed by means of an inlet-side, flow divider (201) having exactly four flow openings (201A, 201B, 201C, 201D) spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider (202) having exactly four flow openings (202A, 202B, 202C, 202D) spaced, in each case, from one another; as well as exactly four, straight, measuring tubes (181, 182, 183, 184) connected to the flow dividers (201, 202) for guiding flowing medium along flow paths connected in parallel. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one the flow openings (201A, 201B, 201C, 201D) of the inlet-side, flow divider (201) and with an outlet-side, measuring tube end into one the flow openings (202A, 202B, 202C, 202D) of the outlet-side, flow divider (202). Additionally, the measuring transducer includes an electromechanical exciter mechanism (5) for producing and/or maintaining mechanical oscillations of the four measuring tubes (181, 182, 183, 184), wherein the exciter mechanism is embodied in such a manner, that, therewith, the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation (XZ1, XZ2). The measuring transducer of the invention is suitable, especially, for measuring a density and/or a mass flow rate of a medium flowing in a pipeline, at least at times, with a mass flow rate of more than 2200 t/h.
摘要:
The measuring system of the invention comprises: A measuring transducer of vibration-type, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: An inlet-side flow divider (201) with four, mutually spaced, flow openings (201A, 201B, 201C, 201D); an outlet-side flow divider (202) with four, mutually spaced, flow openings (202A, 202B, 202C, 202D); four, mutually parallel, straight, measuring tubes (181, 182, 183, 184) for conveying flowing medium, connected to the flow dividers (201, 202) for forming a tube arrangement having at least four flow paths for parallel flow; as well as an electromechanical exciter mechanism (4) for exciting and maintaining mechanical oscillations of the measuring tubes (181, 182). Each of the four measuring tubes opens with an inlet-side measuring tube end into a flow opening (201A) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202A) of the outlet-side flow divider (202), a third measuring tube opens with an inlet-side measuring tube end into a flow opening (201C) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202C) of the outlet-side flow divider (202) and a fourth measuring tube opens with an inlet-side measuring tube end into a flow opening (201D) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202D) of the outlet-side flow divider (202). The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into torsional oscillations of the first measuring tube (181), opposite-equal torsional oscillations of the second measuring tube (182), as well as into torsional oscillations of the third measuring tube (183), opposite-equal torsional oscillations of the fourth measuring tube (184).
摘要:
The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing (71), of which an inlet-side, housing end is formed by means of an inlet-side, flow divider (201) having exactly four flow openings (201A, 201B, 201C, 201D) spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider (202) having exactly four flow openings (202A, 202B, 202C, 202D) spaced, in each case, from one another; as well as exactly four, straight, measuring tubes (181, 182, 183, 184) connected to the flow dividers (201, 202) for guiding flowing medium along flow paths connected in parallel. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one the flow openings (201A, 201B, 201C, 201D) of the inlet-side, flow divider (201) and with an outlet-side, measuring tube end into one the flow openings (202A, 202B, 202C, 202D) of the outlet-side, flow divider (202). Additionally, the measuring transducer includes an electromechanical exciter mechanism (5) for producing and/or maintaining mechanical oscillations of the four measuring tubes (181, 182, 183, 184), wherein the exciter mechanism is embodied in such a manner, that, therewith, the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation (XZ1, XZ2). The measuring transducer of the invention is suitable, especially, for measuring a density and/or a mass flow rate of a medium flowing in a pipeline, at least at times, with a mass flow rate of more than 2200 t/h.
摘要:
A measuring transducer comprises a housing, and a tube arrangement formed by means of at least two tubes extending within the housing. At least one tube is embodied as a measuring tube serving for conveying flowing medium and another tube is mechanically connected with the tube by means of a coupling element to form an inlet-side coupling zone and by means of a coupling element. The coupling element is arranged equally far removed from the housing end. One coupling element has, about an imaginary longitudinal axis of the tube arrangement imaginarily connecting a center of mass of the coupling element and a center of mass of the other coupling element, with an angle of intersection equal to that with the other coupling element, a bending stiffness, which deviates from a bending stiffness of the other coupling element about said imaginary longitudinal axis of the tube arrangement.
摘要:
A measuring transducer comprises a transducer housing, of which an inlet-side housing end is formed by means of an inlet-side flow divider having eight, mutually spaced flow openings and an outlet-side housing end is formed by means of an outlet-side flow divider having eight, mutually spaced flow openings as well as a tube arrangement with eight bent measuring tubes for the conveying flowing medium, which, forming flow paths connected for parallel flow, are connected to the flow dividers, wherein each of the eight measuring tubes in each case opens with an inlet-side measuring tube end into one of the flow openings of the flow divider, and in each case opens with an outlet-side measuring tube end into one of the flow openings of the flow divider. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the measuring tubes.
摘要:
A measuring transducer comprises a housing, and a tube arrangement formed by means of at least two tubes extending within the housing. At least one tube is embodied as a measuring tube serving for conveying flowing medium and another tube is mechanically connected with the tube by means of a coupling element to form an inlet-side coupling zone and by means of a coupling element. The coupling element is arranged equally far removed from the housing end. One coupling element has, about an imaginary longitudinal axis of the tube arrangement imaginarily connecting a center of mass of the coupling element and a center of mass of the other coupling element, with an angle of intersection equal to that with the other coupling element, a bending stiffness, which deviates from a bending stiffness of the other coupling element about said imaginary longitudinal axis of the tube arrangement.
摘要:
The transducer (1) has at least one at least temporarily vibrating flow tube (101) of predeterminable lumen for conducting a fluid. The flow tube (101) communicates with a connected pipe via an inlet tube section (103), ending in an inlet end, and an outlet tube section (104), ending in an outlet end, and in operation performs flexural vibrations about an axis of vibration joining the inlet and outlet ends. The flow tube (101) has at least one arcuate tube section (101c) of predeterminable three-dimensional shape which adjoins a straight tube segment (101a) on the inlet side and a straight tube segment (101b) on the outlet side. At least one stiffening element (111, 112) is fixed directly on or in close proximity to the arcuate tube segment (101c) to stabilize the three-dimensional shape. By means of the at least one stiffening element (111, 112), the cross sensitivity of the transducer (1) is greatly reduced, so that cross talks from pressure to mass flow signals are minimized and the accuracy of the transducer is improved.
摘要:
A transducer has at least one at least temporarily vibrating flow tube of predeterminable lumen for conducting a fluid. The flow tube communicates with a connected pipe via an inlet tube section (103), ending in an inlet end, and an outlet tube section, ending in an outlet end, and in operation performs flexural vibrations about an axis of vibration joining the inlet and outlet ends. The flow tube has at least one arcuate tube section of predeterminable three-dimensional shape which adjoins a straight tube segment on the inlet side and a straight tube segment on the outlet side. At least one stiffening element is fixed directly on or in close proximity to the arcuate tube segment to stabilize the three-dimensional shape. By means of the at least one stiffening element, the cross sensitivity of the transducer is greatly reduced, so that cross talks from pressure to mass flow signals are minimized and the accuracy of the transducer is improved.
摘要:
A transducer has at least one at least temporarily vibrating flow tube of predeterminable lumen for conducting a fluid. The flow tube communicates with a connected pipe via an inlet tube section (103), ending in an inlet end, and an outlet tube section, ending in an outlet end, and in operation performs flexural vibrations about an axis of vibration joining the inlet and outlet ends. The flow tube has at least one arcuate tube section of predeterminable three-dimensional shape which adjoins a straight tube segment on the inlet side and a straight tube segment on the outlet side. At least one stiffening element is fixed directly on or in close proximity to the arcuate tube segment to stabilize the three-dimensional shape. By means of the at least one stiffening element, the cross sensitivity of the transducer is greatly reduced, so that cross talks from pressure to mass flow signals are minimized and the accuracy of the transducer is improved.
摘要:
A transducer has at least one at least temporarily vibrating flow tube of predeterminable lumen for conducting a fluid. The flow tube communicates with a connected pipe via an inlet tube section (103), ending in an inlet end, and an outlet tube section, ending in an outlet end, and in operation performs flexural vibrations about an axis of vibration joining the inlet and outlet ends. The flow tube has at least one arcuate tube section of predeterminable three-dimensional shape which adjoins a straight tube segment on the inlet side and a straight tube segment on the outlet side. At least one stiffening element is fixed directly on or in close proximity to the arcuate tube segment to stabilize the three-dimensional shape. By means of the at least one stiffening element, the cross sensitivity of the transducer is greatly reduced, so that cross talks from pressure to mass flow signals are minimized and the accuracy of the transducer is improved.