Abstract:
A housing (2) is provided, comprising a body (201) further comprising a metal. A cover (200) coupleable to the body (201) is provided, and an antenna slot (202) is formed in the housing (2), wherein the antenna slot (202) is filled with a compound (210). A method of forming a housing (2) is provided, comprising forming the housing (2) from a metal and forming an antenna slot (202) therein. The housing (2) is etched, and a compound (210) is inserted into the antenna slot (202). Meter electronics (20) are housed inside the housing (2), and a wireless data signal transmitted through the compound (210) to communicate with meter electronics (20).
Abstract:
A Coriolis mass flow measuring device and/or density measuring device, comprising: at least two measuring tubes which extend mirror symmetrically to a first mirror plane; at least one exciter mechanism and at least one sensor arrangement for exciting and registering measuring tube oscillations; two terminally located collectors for joining the measuring tubes; a support body for connecting the collectors; and a number of plate-shaped couplers for pairwise connecting of the measuring tubes for forming an oscillator. The measuring tube centerlines of the measuring tubes have two oppositely bent sections and an intermediately lying straight section. The second bent section is arranged on the side of the straight section away from the second mirror plane. The projection of the measuring tube centerline between the intersection with the second mirror plane and the transition between the straight section and the second bent section onto the second mirror plane is not less than the separation between the second mirror plane and the measuring tube centerline at the transition between the straight section and the second bent section, wherein the first bent section has stiffening element, which annularly grip around the measuring tube.
Abstract:
A vibrating sensor assembly (200) is provided. The vibrating sensor assembly (200) includes a one-piece conduit mount (205). The one-piece conduit mount (205) includes an inlet port (206), an outlet port (208), and a conduit support base (210) extending from the inlet port (206) to the outlet port (208). The vibrating sensor assembly (200) further includes a single fluid conduit (203) with two or more loops (204A, 204B) separated by a crossover section (213), which is coupled to the one-piece conduit mount (205).
Abstract:
A method for reducing flowmeter braze joint stress is provided. The method comprises the step of bending a flow tube (20) to create at least one thermal expansion bend (300, 302) thereon. The method comprises the step of aligning a flow tube (20) with at least one anchor block (30a, 30b). Additionally, the flow tube (20) is brazed to the at least one anchor block (30a, 30b) in another step, after which the flow tube (20) and the at least one anchor block (30a, 30b) are allowed to cool and contract a predetermined degree after brazing. The method additionally comprises the step of attaching the at least one anchor block (30a, 30b) to a support block (100) after the flow tube (20) has been attached to the at least one anchor block (30a, 30b) and attaching a manifold (90, 92) to each end of the flow tube (20).
Abstract:
A feed-through (300) is provided according to the invention. The feed-through (300) includes a body (305) including a passage (320), a plug (325) located in and substantially blocking the passage (320), one or more conductors (328) extending through the plug (325), and a reduced diameter region (313) located on an exterior surface of the body (305), with the reduced diameter region (313) being adapted to receive ends of one or more projecting fasteners (330) of a second component.
Abstract:
A method, system, and apparatus for measuring mass flow comprises two tubes for transporting a material; two exciters wherein one of the two exciters is fixedly attached on each of the two tubes configured to induce a vibration in the two tubes; at least two sensors on each of the tubes; a test media flowing through the tube, wherein a phase difference in the tubes is indicative of a mass flow of the test media; and a comparer module operably connected to the at least two sensors on each of the tubes for determining a phase difference of the vibrations in the tubes and determining a mass flow according to the phase difference.
Abstract:
A system and method for monitoring drilling operations by dividing a flow of fluid into at least one discrete fluid unit, circulating the fluid unit through a wellbore, and comparing a measured change to a property of the fluid unit to a predicted change in the property of the fluid unit. In addition to measuring the change to the property of the fluid unit, the fluid unit may be tracked by iteratively calculating the location of the fluid unit as it passes through the wellbore. Data collected for the fluid unit by a control system may be analyzed and used by the control system or an operator to diagnose problems or improve overall efficiency of drilling operations.
Abstract:
A Coriolis mass flowmeter having at least one curved measuring tube having an inlet end, outlet end and a central curved section between the inlet end and outlet end, a carrier bridge extending between the inlet end and outlet end of the measuring tube and fixing the measuring tube ends, at least one oscillation generator attached to the measuring tube, at least one oscillation sensor for detecting measuring tube oscillations, an evaluation unit for evaluating detected measuring tube oscillations, and wherein the measuring tube extends through at least one opening from an inner area of the carrier bridge out of the carrier bridge into the outer area of the carrier bridge, the central curved section running outside of the carrier bridge. A conductor guiding structure is arranged on the carrier bridge extending toward the oscillation sensor and the conductor arrangement fixed on the conductor guiding structure.
Abstract:
A device (1) for determining temperature and a measuring arrangement for determining flow that allows for a secure attachment on an object. The device has a measuring element (2) with a temperature-dependent electric resistance value. The measuring element (2) is surrounded by a thermally conductive fixing element (5) and is encompassed by a retaining bracket (6).
Abstract:
A multi-phase process fluid is passed through a vibratable flowtube. Motion is induced in the vibratable flowtube. A first apparent property of the multi-phase process fluid based on the motion of the vibratable flowtube is determined, and an apparent intermediate value associated with the multi-phase process fluid based on the first apparent property is determined. A corrected intermediate value is determined based on a mapping between the intermediate value and the corrected intermediate value. A phase-specific property of a phase of the multi-phase process fluid is determined based on the corrected intermediate value.