Abstract:
A method and apparatus for classifying an image. In one example, the method may include receiving one or more images associated with a source domain and one or more images associated with a target domain, identifying one or more source domain features based on the one or more images associated with the source domain, identifying one or more target domain features based on the one or more images associated with the target domain, training a conditional maximum mean discrepancy (CMMD) engine based on a difference between the one or more source domain features and the one or more target domain features, applying the CMMD engine to the one or more images associated with the target domain to generate one or more labels for each unlabeled target image of the one or more images associated with the target domain and classifying each one of the one or more images in the target domain using the one or more labels.
Abstract:
Methods, systems and processor-readable media for vehicle classification. In general, one or more vehicles can be scanned utilizing a laser scanner to compile data indicative of an optical profile of the vehicle(s). The optical profile associated with the vehicle(s) is then pre-processed. Particular features are extracted from the optical profile following pre-processing of the optical profile. The vehicle(s) can be then classified based on the particular features extracted from the optical feature. A segmented laser profile is treated as an image and profile features that integrate the signal in one of the two directions of the image and Fisher vectors which aggregate statistics of local “patches” of the image are computed and utilized as part of the extraction and classification process.
Abstract:
A domain-adapted classification system and method are disclosed. The method includes mapping an input set of representations to generate an output set of representations, using a learned transformation. The input set of representations includes a set of target samples from a target domain. The input set also includes, for each of a plurality of source domains, a class representation for each of a plurality of classes. The class representations are representative of a respective set of source samples from the respective source domain labeled with a respective class. The output set of representations includes an adapted representation of each of the target samples and an adapted class representation for each of the classes for each of the source domains. A class label is predicted for at least one of the target samples based on the output set of representations and information based on the predicted class label is output.
Abstract:
Disclosed is a method and system of differential processing a print job including one or more original documents to render an obfuscated version of the print job. According to an exemplary method, the differential process replaces letters of an original document with randomly selected characters of substantially the same size and location as the original document and objects such as images/graphics are replaced with blurred versions of substantially the same size and locations as the objects in the original document. The differential process creates an obfuscated version of the print job which is illegible and useful for further processing where privacy of documents included in the print job is required.
Abstract:
A system and method for targeted summarization of a patient's electronic medical records are provided. The system includes an aggregation component which provides an aggregation of health records of a patient. A transformation component transforms the health records of the patient into representations in a multidimensional search space. A search component generates an implicit query in the multidimensional search space and retrieves responsive heath records based on the implicit query. A summarization component generates a summary based on the retrieved responsive health records for display to a healthcare provider on an associated user interface. A processor implements the aggregation component, transformation component, search component, and summarization component.
Abstract:
A method for information retrieval includes querying a multimedia collection with a first component of a multimedia query to generate first comparison measures between the first component of the query and respective objects in the collection for a first media type. The collection is queried with a second component of the multimedia query to generate second comparison measures between the second component of the query and respective objects in the collection for a second media type. An aggregated score for each of a set of objects in the collection is computed by applying an aggregating function in which a first confidence weighting is applied to the first comparison measure and a second confidence weighting is applied to the second comparison measure. The first confidence weighting is independent of the second comparison measure. The second confidence weighting is dependent on the first comparison measure.
Abstract:
A classification method includes receiving a collection of samples, each sample comprising a multidimensional feature representation. A class label prediction for each sample in the collection is generated with one or more pretrained classifiers. For at least one iteration, each multidimensional feature representation is augmented with a respective class label prediction to form an augmented representation, a set of corrupted samples is generated from the augmented representations, and a transformation that minimizes a reconstruction error for the set of corrupted samples is learned. An adapted class label prediction for at least one of the samples in the collection is generated using the learned transformation and information is output, based on the adapted class label prediction. The method is useful in predicting labels for target samples where there is no access to source domain samples that are used to train the classifier and no access to target domain training data.
Abstract:
A machine learning method operates on training instances from a plurality of domains including one or more source domains and a target domain. Each training instance is represented by values for a set of features. Domain adaptation is performed using stacked marginalized denoising autoencoding (mSDA) operating on the training instances to generate a stack of domain adaptation transform layers. Each iteration of the domain adaptation includes corrupting the training instances in accord with feature corruption probabilities that are non-uniform over at least one of the set of features and the domains. A classifier is learned on the training instances transformed using the stack of domain adaptation transform layers. Thereafter, a label prediction is generated for an input instance from the target domain represented by values for the set of features by applying the classifier to the input instance transformed using the stack of domain adaptation transform domains.
Abstract:
Training instances from a target domain are represented by feature vectors storing values for a set of features, and are labeled by labels from a set of labels. Both a noise marginalizing transform and a weighting of one or more source domain classifiers are simultaneously learned by minimizing the expectation of a loss function that is dependent on the feature vectors corrupted with noise represented by a noise probability density function, the labels, and the one or more source domain classifiers operating on the feature vectors corrupted with the noise. An input instance from the target domain is labeled with a label from the set of labels by operations including applying the learned noise marginalizing transform to an input feature vector representing the input instance and applying the one or more source domain classifiers weighted by the learned weighting to the input feature vector representing the input instance.
Abstract:
A system and method for classifying vehicles from laser scan data by receiving laser scan data corresponding to multiple vehicles from a laser scanner; extracting vehicle shapes corresponding to the multiple vehicles based on the laser scan data; aligning the vehicle shapes; and generating vehicle profiles based on the aligned vehicle shapes. The system and method can further include aligning the vehicle shapes using sequence kernels, such as global alignment kernels, and constraining the sequence kernels based on determined weights.