Abstract:
A touch-control display panel, a driving method thereof, and a touch-control display device are provided. The display panel includes a first substrate and a plurality of touch-control driving electrodes extending along a second direction. The first substrate includes a first touch-control display region and a second touch-control display region arranged along a first direction. The plurality of touch-control driving electrodes include first touch-control driving electrodes distributed in the first touch-control display region and second touch-control driving electrodes distributed in the second touch-control display region. The number of the first touch-control driving electrodes is equal to the number of the second touch-control driving electrodes. One first touch-control driving electrode and one second touch-control driving electrode are scanned simultaneously, a distance from the one first touch-control driving electrode to the second touch-control display region is equal to a distance from the one second touch-control driving electrode to the first touch-control display region.
Abstract:
An integrated touch control display panel and a display apparatus are disclosed. The integrated touch control display panel comprises a touch-control-emitting-electrode-array including a plurality of touch control emitting strip electrodes arranged along a first direction; and a touch-control-sensing-electrode-array including a plurality of touch control sensing strip electrodes arranged along a second direction. An orthogonal projection of any touch control sensing strip electrode to the touch-control-emitting-electrode-array at least partially overlaps with any of the touch control emitting strip electrodes; and the touch control sensing strip electrodes are metal mesh electrodes, the metal mesh electrodes comprising a plurality of metal curves. This can reduce the resistance of the touch control sensing strip electrode, such that the integrated touch control display panel and the display apparatus have a more sensitive touch control sensing effect.
Abstract:
Provided are a display panel and a display device. The display panel includes a display area and a non-display area surrounding the display area, the display area includes a first rectangular area and a first special-shaped area disposed adjacent to the first rectangular area, and the non-display area includes a second rectangular area adjacent to the first rectangular area and a second special-shaped area adjacent to the first special-shaped area. The display area includes pixel units arranged in an array, and a plurality of shift registers are disposed in the second rectangular area and the second special-shaped area, where each of the plurality of shift registers is connected to a row of pixel units. The second special-shaped area includes a laser cutting affected area, where none of the plurality of shift registers is disposed in at least part of the laser cutting affected area.
Abstract:
A display substrate, a display module and a control method are provided in the present disclosure. The display substrate includes a first substrate and a second substrate. The first substrate includes a base substrate, conductive pads, a first switch unit group electrically connected to the conductive pads and signal wires, and a second switch unit group electrically connected to the conductive pads. The display substrate includes a substrate detection phase where all second switch units are cutoff, all first switch units are conducting, and an external detection device input a first detection signal to the substrate through the conductive pads and all first switch units. When the first switch unit group is conducting, the conductive pads are used for substrate detection, and when the second switch unit group is cutoff, the conductive pads in a same pad region are connected each other to be multiplexed as electrostatic conductive pads.
Abstract:
A touch-control display panel and an electronic device are provided. The touch-control display panel comprises a first substrate, and the first substrate includes a display region and a non-display region surrounding the display region. The non-display region includes a first non-display region and a second non-display region. Further, a first electrode layer is disposed on the first substrate. The first electrode layer includes a first electrode matrix having at least three first electrode columns. Each first electrode column includes a plurality of first electrodes, and each first electrode is connected to an electrode line. The first electrode matrix is divided into a first electrode group and a second electrode group, the electrode lines corresponding to the first electrodes in the first electrode group extend from the first non-display region, and the electrode lines corresponding to the first electrodes in the second electrode group extend from the second non-display region.
Abstract:
A touch array substrate, a liquid crystal display panel and a liquid crystal display device. The touch array substrate includes: a substrate; a touch sensing electrode layer including a plurality of touch sensing electrodes insulated from each other, each of which is electrically connected with one touch sensing electrode line; where, the touch sensing electrode includes a first slot, and a first region, which represents a projection of the first slot onto the substrate in a direction perpendicular to the substrate and is at least partially overlapped with a second region which represents a projection of the touch sensing electrode line onto the substrate in the direction perpendicular to the substrate.
Abstract:
A liquid crystal display panel is disclosed. The liquid crystal display includes an array substrate comprising a thin film transistor device layer and a first film layer formed on the thin film transistor device layer; a color film substrate arranged corresponding to the array substrate; a liquid crystal layer formed between the array and color film substrates; a frame glue for binding the array and color film substrates; and a support structure formed between the array and color film substrate. The support structure comprises a support pillar formed on the color film substrate and a pad formed on the first film layer. The liquid crystal display panel comprises a display region and a non-display region surrounding the display region; and the support pillar and the pad are located within the non-display region of the liquid crystal display panel, and the support pillar is in contact with the pad.
Abstract:
A driving unit, a driving method, a driving circuit, and a display panel are disclosed. The driving unit is for providing a signal to a touch electrode of an array substrate, comprising: a first control signal input terminal, a second control signal input terminal, a gating signal input terminal, a touch control driving module, a display driving module, and a signal output terminal. The touch control driving module is configured to output a touch control signal to the signal output terminal, and is controlled by a signal inputted through the first control signal input terminal, a signal inputted through the second control signal input terminal, and a signal inputted through the gating signal input terminal. The display driving module is configured to output a common voltage signal to the signal output terminal, and is controlled by the signal inputted through the gating signal input terminal.
Abstract:
A touch array substrate, a liquid crystal display panel and a liquid crystal display device. The touch array substrate includes: a substrate; a touch sensing electrode layer including a plurality of touch sensing electrodes insulated from each other, each of which is electrically connected with one touch sensing electrode line; where, the touch sensing electrode includes a first slot, and a first region, which represents a projection of the first slot onto the substrate in a direction perpendicular to the substrate and is at least partially overlapped with a second region which represents a projection of the touch sensing electrode line onto the substrate in the direction perpendicular to the substrate.
Abstract:
A display panel and a display device are provided. The display panel includes: a display region and a non-display region surrounding the display region; multiple gate lines; and multiple data lines. The gate lines include regular gate lines and irregular gate lines. In the display region, the regular gate lines and the irregular gate lines are extended in a first direction, and a length of a part of the regular gate line in the display region is greater than a length of a part of the irregular gate line in the display region. The data lines include regular data lines and irregular data lines, and an extension direction of the regular data lines and the irregular data lines intersects with the first direction.