Abstract:
A transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. Another transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a cyclic prefix and a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. The methods can avoid the interference of the preamble to the data of the uplink subframe, and can improve the coverage area of the random access channel and the work efficiency of the time division duplex system.
Abstract:
The present invention provides a method and system for processing an uplink control signaling feedback. The method comprises: a base station configuring a feedback mode of an uplink control signaling for user equipment, wherein the feedback mode is used for instructing the user equipment a manner in which to transmit the uplink control signaling on a physical uplink control channel (PUCCH) and/or a physical uplink shared channel (PUSCH); and the user equipment sending the uplink control signaling according to the feedback mode. By way of the present invention, it is ensured that the base station can correctly demodulate the uplink control signaling.
Abstract:
A method for sending a physical broadcast channel in the TDD system is disclosed, which is: a signal of a physical broadcast channel is not sent in a pilot position, and the signal of the physical broadcast channel is sent on 4 OFDM symbols of the first subframe of one radio frame. Through the present invention, the extension requirement of the physical broadcast channel capacity in the TDD can be met, and the system complexity is reduced due to the normal cyclic prefix and extended prefix using the same sending method.
Abstract:
The present invention discloses a method for mapping physical random access channels, which comprises the following steps: the PRACHs in the same time domain location are mapped from low frequency to high frequency, or from high frequency to low frequency in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap; or the PRACHs in the same time domain location are mapped from two sides to the middle in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap. The present invention enables uniformly distributing the PRACHs which require to be processed by the same base station in the time domain, and decreasing the inter-cell interference of the second type PRACH to the utmost extent at the same time.
Abstract:
A method for indicating an uplink resource is provided, including that: when a base station side transmits an uplink resource indication signaling in a downlink subframe, an uplink subframe indication signaling corresponding to the uplink resource indication signaling being transmitted together; and the uplink subframe indication signaling is used for indicating an uplink subframe used by a user side to transmit data according to the uplink resource indication signaling. A system for implementing the method is also provided, which can distinguish a resource indication signaling corresponding to different uplink subframes in the same downlink subframe, and avoid that all the users of different uplink subframes transmit the data in the same resource of the same uplink frame, thereby avoiding mutual interference between the users of the uplink subframes, ensuring system performance and resulting in less signaling overhead.
Abstract:
The present disclosure discloses a method and a device for transmitting data. The method includes: a UE determining, according to a preset rule, whether to transmit PUCCH and/or PUSCH and/or an SRS or not on a last symbol of a current subframe; the UE determining the PUCCH and/or the PUSCH to be transmitted on the current subframe according to availability of the last symbol of the current subframe for transmitting the PUCCH and/or the PUSCH; and the UE transmitting the PUCCH and/or the PUSCH on the current subframe and/or transmitting the SRS on the last symbol of the current subframe. In virtue of the present disclosure, it can be realized that a plurality of types of physical uplink signals/channels are simultaneously transmitted.
Abstract:
Provided are a method and apparatus for sending Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) information. The method includes: when a terminal employs a physical uplink control channel (PUCCH) format 3 to transmit HARQ-ACK information and the HARQ-ACK information is transmitted over a uplink physical shared channel (PUSCH), determining the number of downlink subframes for serving cells to feed back the HARQ-ACK information; determining the number of encoded modulated symbols required for sending the HARQ-ACK information according to the determined number of downlink subframes; and mapping the HARQ-ACK information to be sent to the PUSCH of a specified uplink subframe according to the number of encoded modulated symbols and sending the HARQ-ACK information. The technical solutions provided by the disclosure are applied to improve the performance of the HARQ-ACK information, and thus improve the data performance.
Abstract:
A base station, a terminal, a system and methods for performing data transmission in a Time Division Duplex (TDD) system are disclosed. One of the methods includes: the base station sending an uplink scheduling grant signaling to the terminal on a carrier m, and after receiving uplink data sent by the terminal through a Physical Uplink Shared Channel (PUSCH) on a carrier n, the base station sending an ACK/NACK feedback signaling corresponding to the PUSCH to the terminal on the carrier m; wherein, m≠n; a timing relationship between a subframe by which the base station sends the uplink scheduling grant signaling and/or the ACK/NACK feedback signaling and a subframe where the PUSCH is located is identical with a Hybrid Automatic Repeat Request (HARQ) timing relationship corresponding to an uplink/downlink configuration of the carrier m or the carrier n.
Abstract:
A method for sending a physical broadcast channel in the TDD system is disclosed, which is: a signal of a physical broadcast channel is not sent in a pilot position, and the signal of the physical broadcast channel is sent on 4 OFDM symbols of the first subframe of one radio frame. Through the present invention, the extension requirement of the physical broadcast channel capacity in the TDD can be met, and the system complexity is reduced due to the normal cyclic prefix and extended prefix using the same sending method.
Abstract:
A method for sending a sounding reference signal (SRS) of uplink channel in a time division duplex system is provided, a terminal calculates the parameters of the resource for sending an SRS in an uplink pilot time slot (UpPTS) according to the configuration information related to the sounding reference signal (SRS) of the uplink channel, the parameters include the frequency domain start position of the resource, and then the SRS is sent over the resource; wherein when the frequency domain start position of the resource is calculated, it is necessary to determine the index of the first sub-carrier in the maximum SRS bandwidth; the terminal determines the index according to the frequency domain position of one PRACH or that of more PRACHs in the uplink pilot time slots, when the PRACH includes the sub-carrier at the lower boundary of the system bandwidth, the upper boundary of the system bandwidth is used as the end position of the maximum SRS bandwidth and the start position of the maximum SRS bandwidth is calculated; and when the PRACH includes the sub-carrier at the upper boundary of the system bandwidth, the lower boundary of the system bandwidth is used as the start position of the maximum SRS bandwidth, and then the index is determined through the start position of the maximum SRS bandwidth plus the offset parameter configured for the terminal. With the sending position of the maximum SRS bandwidth in the UpPTS, which is obtained by the method of the present invention, the interference between the SRS signal and the PARCH can be avoided, and it is possible to implement the channel sounding for more bandwidth.