Abstract:
This document presents a system for managing treatment for an emergency cardiac event. The system includes memory, one or more electronic ports for receiving ECG signals, and a treatment module executable on one or more processing devices. The module is configured to perform a number of transformation on portions of an ECG signal into frequency domain data, obtain one or more previous values derived from one or more time segments of the ECG, and determine, based on the frequency domain data a first value and a second value, determine a probability of therapeutic success. The module is further configured to cause one or more output devices to present an indication of the probability of therapeutic success.
Abstract:
A system for managing care of a person receiving emergency cardiac assistance is disclosed that includes one or more capacitors for delivering a defibrillating shock to a patient; one or more electronic ports for receiving signals from sensors for obtaining indications of an electrocardiogram (ECG) for the patient; and a patient treatment module executable on one or more computer processors using code stored in non-transitory media and to provide a determination of a likelihood of success from delivering a future defibrillating shock to the person with the one or more capacitors, using (a) a mathematical transform from a time domain to a frequency domain applied to the indication of the ECG, and (b) a tapered window for identifying the portion of the indications of the ECG on which the transform is performed.
Abstract:
This document relates to cardiac resuscitation, and in particular to systems and techniques for protecting rescuers from electrical shock during defibrillation of a patient.
Abstract:
In an aspect, a system for treating a patient in cardiac arrest is described and includes memory, one or more electronic ports for receiving signals from sensors for obtaining indications of an electrocardiogram (ECG) of the patient, one or more sensors for obtaining a transthoracic impedance of the patient, and a patient treatment module executable on one or more processing devices that is configured to generate, from the ECG, transform values that represent magnitudes of two or more frequency components of the ECG, and modify, based on at least one transform value, at least one shock delivery parameter.
Abstract:
This document presents a system for managing treatment for an emergency cardiac event. The system includes memory, one or more electronic ports for receiving ECG signals, and a treatment module executable on one or more processing devices. The module is configured to generate transform values for a time segment of ECG, obtain one or more previous values derived from one or more earlier time segments of the ECG, and determine, based on the generated transform values, and the one or more previous values, at least one of: a) a future therapeutic action for treating the emergency cardiac event, or b) a phase of the cardiac event. The module is further configured to cause one or more output devices to present an indication of at least one of the therapeutic action or the phase of the cardiac event.
Abstract:
This document presents a system for managing treatment for an emergency cardiac event. The system includes memory, one or more electronic ports for receiving ECG signals, and a treatment module executable on one or more processing devices. The module is configured to perform a number of transformation on portions of an ECG signal into frequency domain data, obtain one or more previous values derived from one or more time segments of the ECG, and determine, based on the frequency domain data a first value and a second value, determine a probability of therapeutic success. The module is further configured to cause one or more output devices to present an indication of the probability of therapeutic success.
Abstract:
A medical device that includes a power source, a therapy delivery interface, therapy electrodes, electrocardiogram (ECG) sensing electrodes to sense ECG signal of a heart of a patient, a sensor interface to receive and digitize the ECG signal, and a processor. The processor is configured to analyze the ECG signal to determine a cardiac rhythm and a transform value representing a magnitude of a frequency component of the cardiac rhythm, analyze the cardiac rhythm and the transform value to detect a shockable cardiac arrhythmia by classifying the cardiac rhythm as a noise rhythm or a shockable cardiac arrhythmia rhythm based on the transform value, and causing the processor to detect the cardiac arrhythmia if classifying the cardiac rhythm as a shockable cardiac arrhythmia rhythm, initiate a treatment alarm sequence, adjust the shock delivery parameter for a defibrillation shock, and provide the defibrillation shock via the therapy electrodes.
Abstract:
A system for managing care of a person receiving emergency cardiac assistance includes one or more capacitors arranged to deliver a defibrillating shock to a person; one or more electronic ports for receiving a plurality of signals from sensors for obtaining indications of an electrocardiogram (ECG) for the person; and a patient treatment module executable on one or more computer processors using code stored in non-transitory media and to provide a determination of a likelihood of success from delivering a future defibrillating shock to the person with the one or more capacitors, using a mathematical computation applied to a vector value defined by signals from at least two of the plurality of signals.
Abstract:
This document presents a system for managing treatment for an emergency cardiac event. The system includes memory, one or more electronic ports for receiving ECG signals, and a treatment module executable on one or more processing devices. The module is configured to generate transform values for a time segment of ECG, obtain one or more previous values derived from one or more earlier time segments of the ECG, and determine, based on the generated transform values, and the one or more previous values, at least one of: a) a future therapeutic action for treating the emergency cardiac event, or b) a phase of the cardiac event. The module is further configured to cause one or more output devices to present an indication of at least one of the therapeutic action or the phase of the cardiac event.
Abstract:
A system for managing care of a person receiving emergency cardiac assistance is disclosed that includes one or more capacitors for delivering a defibrillating shock to a patient; one or more electronic ports for receiving signals from sensors for obtaining indications of an electrocardiogram (ECG) for the patient; a patient treatment module executable on one or more computer processors to provide a determination of a likelihood of success from delivering a future defibrillating shock to the person with the one or more capacitors, using (a) information about a prior defibrillating shock, and (b) a value that is a function of current ECG signals from the patient.