Abstract:
A tunable apparatus for performing Surface Enhanced Raman Spectroscopy (SERS) includes a deformable layer and a plurality of SERS-active nanoparticles disposed at one or more locations on the deformable layer, wherein the one or more locations are configured to be illuminated with light of a pump wavelength to cause Raman excitation light to interact with the nanoparticles and produce enhanced Raman scattered light from molecules located in close proximity to the nanoparticles. In addition, a morphology of the deformable layer is configured to be controllably varied to modify an intensity of the Raman scattered light produced from the molecules.
Abstract:
An apparatus for performing SERS includes a substrate and flexible nano-fingers, each of the nano-fingers having a first end attached to the substrate, a free second end, and a body portion extending between the first end and the second end, in which the nano-fingers are arranged in an array on the substrate. The apparatus also includes an active material layer disposed on each of the second ends of the plurality of nano-fingers, in which the nano-fingers are to be in a substantially collapsed state in which the active layers on at least two of the nano-fingers contact each other under dominant attractive forces between the plurality of nano-fingers and in which the active material layers are to repel each other when the active material layers are electrostatically charged.
Abstract:
A surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a plurality of nanorods configured to vibrate. The apparatus includes the nanorods having tips at free ends opposite an end attached to a substrate. The tips are configured to adsorb an analyte and to vibrate at a vibration frequency. The apparatus further includes a vibration source configured to vibrate the free ends of the nanorods at the vibration frequency in a back-and-forth motion. Vibration of the nanorods is configured to facilitate detection of a Raman scattering signal emitted by the analyte adsorbed on the nanorod tips. The system further includes a synchronous detector configured to receive the Raman signal and to be gated cooperatively with the vibration of the nanorods. The method includes inducing a vibration of the nanorods, illuminating the vibrating tips to produce a Raman signal, and detecting the Raman signal using the detector.
Abstract:
A multi-pillar structure for molecular analysis is provided. The structure comprises at least two nanopoles, each nanopole attached at one end to a substrate and freely movable along its length. The opposite ends of the at least two nanopoles are each capable of movement toward each other to trap at least one analyte molecule at their opposite ends. Each nanopole is coated with a metal coating. An array of such multi-pillar structures is also provided. A method for preparing the multi-pillar structure is further provided.
Abstract:
A surface-enhanced Raman spectroscopy device includes a substrate, and an ultraviolet cured resist disposed on the substrate. The ultraviolet cured resist has a pattern of cone-shaped protrusions, where each cone-shaped protrusion has a tip with a radius of curvature equal to or less than 10 nm. The ultraviolet cured resist is formed of a predetermined ratio of a photoinitiator, a cross-linking agent, and a siloxane based backbone chain. A Raman signal-enhancing material is disposed on each of the cone-shaped protrusions.
Abstract:
An apparatus for detecting at least one species using Raman light detection includes at least one laser source for illuminating a sample containing the at least one species. The apparatus also includes a modulating element for modulating a spatial relationship between the sample and the light beams to cause relative positions of the sample and the light beams to be oscillated, in which Raman light at differing intensity levels are configured to be emitted from the at least one species based upon the different wavelengths of the light beams illuminating the sample. The apparatus also includes a Raman light detector and a post-signal processing unit configured to detect the at least one species.
Abstract:
An apparatus for detecting at least one molecule using Raman light detection includes a substrate for supporting a sample containing the at least one molecule, a laser source for emitting a laser beam to cause Raman light emission from the at least one molecule, a modulating element for modulating a spatial relationship between the laser beam and the substrate at an identified frequency to cause the Raman light to be emitted from the at least one molecule at the identified frequency, at least one detector for detecting the Raman light emitted from the at least one molecule, and a post-signal processing unit configured to process the detected Raman light emission at the identified frequency to detect the at least one molecule.
Abstract:
In a method of fabricating an apparatus for use in a sensing application, a plurality of nano-fingers are formed on a substrate and a Raman-active material nano-particle is formed on respective tips of the nano-fingers. In addition, the Raman-active material nano-particles on the tips of adjacent ones of the nano-fingers are caused to come into contact with the Raman-active material nano-particle on the tip of at least another one of the plurality of nano-fingers to form respective clusters and the clusters of Raman-active material nano-particles are transferred to a component layer from the plurality of nano-fingers while maintaining a spatial relationship between the contacting Raman-active material nano-particles.
Abstract:
An apparatus includes a substrate and a plurality of nano-fingers attached at respective first ends to the substrate and freely movable along their lengths, in which a first set of the plurality of nano-fingers comprises a first physical characteristic, wherein a second set of the plurality of nano-fingers comprises a second physical characteristic, and wherein the first physical characteristic differs from the second physical characteristic.
Abstract:
A device for Surface Enhanced Raman Scattering (SERS). The device includes a plurality of nanostructures protruding from a surface of a substrate, a SERS active metal disposed on a portion of said plurality of nanostructures, and a low friction film disposed over the plurality of nanostructures and the SERS active metal. The low friction film is to prevent adhesion between the plurality of nanostructures.