Abstract:
A method of making an embossed air-laid absorbent sheet includes: depositing a dry web of fibers on a foraminous support; embossing the compacted web with a laser engraved roll provided with a hard rubber embossing surface having an embossing pattern with a depth of from about 5 mils to about 100 mils. The hard rubber embossing surface is biased toward a second embossing surface selected from the group consisting of the surface of a nip roll and a foraminous web support engaging a support embossing roll. The process further includes bonding the web.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85null to 95null from the machine direction.
Abstract:
Method for producing a multi-ply web comprising at least three plies of flexible material, such as paper and nonwoven material and a multi-ply product produced according to the method. A first and second ply are glued together with a first glue pattern and a second and third ply are glued together with a second glue pattern which, as seen in the thickness direction of the multi-ply web, is substantially aligned with the first glue pattern.
Abstract:
A multiply tissue product comprising at least two plies of a tissue interconnected to each other. The multiply tissue further comprises a layer including super absorbent fiber-like particles in at least one interface region in between two adjacent plies of the tissue webs, wherein the basis weight of the layer is between about 0.5% and about 50% of the overall basis weight of the two adjacent plies of tissue.
Abstract:
The invention provides an embossed sheet (10) consisting of at least one ply of crnullped cellulose wadding with a grammage of between 12 and 30 g/m2 of the type with an embossed pattern (16, 18) comprising at least a first series of protuberances (16) formed so as to project from one face of the ply (14) and the density of which is greater than 20e protuberances per cm2, characterized in that each protuberance (16) of the first series comprises a truncated polyhedron-shaped base (28) and a flattened free-end portion (30) with rounded edges.
Abstract:
A paper web of the present invention has a longitudinal centerline and a transverse centerline, and comprises a plurality of first regions and a plurality of second regions. The first regions form boundaries separating the second regions, the first regions being substantially in a plane of the paper web. The second regions comprise a plurality of raised out-of-said-plane rib-like elements, the rib-like elements of each second region being disposed parallel to a major rib axis and perpendicular to a minor rib axis. All or most of each first regions have both major rib axis and minor rib axis components. The first and second regions undergo geometric deformation when the web material is subjected to an applied elongation along at least one axis. A method of the present invention comprises the steps of providing a cellulosic substrate; providing a first platen comprising toothed regions and untoothed regions; providing a second platen comprising toothed regions, the second platen being aligned with the first platen such that the toothed regions of the first and second platens mesh when operably engaged; and pressing the cellulosic substrate between the first platen and the second platen such that the toothed regions deform said web to form regions of discrete fan-folded rib-like elements. Optionally, the cellulosic substrate can be moistened prior to the pressing step.
Abstract:
Nonwoven sheet materials, and adhesive articles formed therefrom are provided that are made with fibers, preferably tensilized nonfracturable staple fibers, and binder fibers, and formed from a combination of interbonding, smooth roll calendering, and pattern embossing techniques. These sheet materials are especially useful as tape backings that are finger tearable in the cross web and the down web directions and also possess a number of other desirable properties, including acceptable tensile strength and enhanced overtaping, for example. A nonwoven sheet material, and adhesive article including the same, can include an embossed pattern having a variety of discontinuous configurations to enhance tearing properties in both the down web and cross web directions.
Abstract:
The invention relates to embossing multi-ply paper products, for example, paper towels, tissue and napkins, in which an improved embossing arrangement is used which is particularly suitable for paper products which have been processed so as to impart undulations whose axes extend in a principal undulatory direction, typically in the machine direction. The absorbent sheet typically further includes undulations which extend in the cross (transverse direction) of the web such that the absorbent sheet has a biaxially undulatory structure. The undulations may be formed by the use of an undulatory creping blade. Defined parameters accommodate: the distance at which the undulations are spaced, the total surface area of the design (embossing) elements, the width and length of the embossing elements and the aspect ratio of the elements, as well as the angular orientation of the embossing elements with respect to the undulations.
Abstract:
The invention relates to a method for producing a structured voluminous non-woven fabric, comprising the following steps: producing a spunbonded non-woven fabric consisting of a plurality of monofilaments which are stretched only at 50 to 70% of the maximum possible stretch range to form a fiber skein and subsequent processing the raw non-woven fabric by means of a second pair of rollers (10a, b) with a metal outer jacket to improve the velvet finish. In the second pair of rollers, the positive elements of the positive roller are nops (11) arranged in rows and the surface of the negative roller has lamellas (13) which are arranged in an axial direction and provided with intermediate recesses (14) so that when the rollers roll against each other the lamellas engage in the channels left open by the nops.
Abstract:
Rolled creped paper products, such as kitchen towels, can be provided with high roll bulk and a high degree of roll firmness by steaming the dry, creped paper sheet immediately prior to embossing the sheet between matched steel embossing rolls. The steaming preconditions the sheet such that the resulting sheet embossments maintain their shape and structural strength, thereby imparting greater bulk and firmness to the wound roll of product. In addition, the sheet experiences less cross-machine strength reduction as a consequence of the embossing.