摘要:
The focus of this invention pertains to the methodology behind launching line-scanning satellite constellations that can image an entire planet such as the Earth at high temporal cadence (less than a week), at high spatial resolution (less than 10 m). Utilizing simple control and operation, our invention captures images of an entire planet in an effective and distributed manner. Additional benefits are realized by taking advantage of the distributed onboard storage and computing abilities of such a constellation to optimize the data collected, system latency, and data downlinked.
摘要:
Apparatus and method is provided for propagating the attitude of a vehicle. A slew rate is computed based on angular rotation increments associated with a time interval. An incremental update is computed for the associated time interval based on an angular rate and the slew rate. An attitude of the vehicle is propagated based on the computed attitude increment and an initial attitude at the start of propagation.
摘要:
An improved method for launch vehicle guidance is disclosed. A pre-computed energy-angular momentum (E-J) curve to place a launch vehicle into a target orbit is received and stored. An energy, angular momentum, radial distance, velocity magnitude, and flight path angle of the launch vehicle are computed from state vector data while the launch vehicle is traveling to the target orbit. The pre-computed E-J curve and the computed energy, angular momentum, radial distance, velocity magnitude, and flight path angle of the launch vehicle are used to determine pitch and pitch rate of the launch vehicle.
摘要:
A system and a method for commanding a spacecraft to perform a three-axis maneuver purely based on “position” (i.e., attitude) measurements. Using an “inertial gimbal concept”, a set of formulae are derived that can map a set of “inertial” motion to the spacecraft body frame based on position information so that the spacecraft can perform/follow according to the desired inertial position maneuvers commands. Also, the system and method disclosed herein employ an intrusion steering law to protect the spacecraft from acquisition failure when a long sensor intrusion occurs.
摘要:
Apparatus and method is provided for propagating the attitude of a vehicle. A slew rate is computed based on angular rotation increments associated with a time interval. An incremental update is computed for the associated time interval based on an angular rate and the slew rate. An attitude of the vehicle is propagated based on the computed attitude increment and an initial attitude at the start of propagation.
摘要:
Provided are a fault detector and a fault detection method for an attitude control system (ACS) of a spacecraft. The fault detector includes a first interacting multiple model (IMM) fault detection block for generating a normal model filter of the plurality of actuators and a plurality of upper level filters including fault model filters corresponding to the respective actuators, and detecting faults of the plurality of actuators using an IMM estimation technique from the plurality of upper level filters, and a second IMM fault detection block for generating a plurality of lower level filters each including a fault type model filter of the fault-detected actuator in the first IMM fault detection block, and detecting a fault type of the failed actuator using the IMM estimation technique.
摘要:
A control system for adjusting the attitude of a spacecraft comprises a set of control moment gyroscopes (CMGs) configured to allow null space maneuvering. The control system further comprises a momentum actuator control processor coupled to the set of CMGs and configured to determine a mandatory null space maneuver to avoid singularities and determine an optional null space maneuver to increase available torque. The mandatory null space maneuver can be calculated based upon certain gimbal angles, and can be implemented by augmenting the inverse-Jacobian control matrix.
摘要:
A system and a method for commanding a spacecraft to perform a three-axis maneuver purely based on “position” (i.e., attitude) measurements. Using an “inertial gimbal concept”, a set of formulae are derived that can map a set of “inertial” motion to the spacecraft body frame based on position information so that the spacecraft can perform/follow according to the desired inertial position maneuvers commands. Also, the system and method disclosed herein employ an intrusion steering law to protect the spacecraft from acquisition failure when a long sensor intrusion occurs.
摘要:
A system for providing attitude control with respect to a spacecraft is provided. The system includes a reaction wheel control module configured to control a number of reaction wheel assemblies associated with the spacecraft in order to control attitude, and a maneuver control module configured to use a number of gimbaled Hall Current thrusters (HCTs) to control the total momentum associated with the spacecraft during an orbit transfer. The total momentum includes the momentum associated with the reaction wheel assemblies and the angular momentum of the spacecraft. Using the gimbaled HCTs to control the momentum associated with the reaction wheel assemblies during the orbit transfer results in minimal HCT gimbal stepping.
摘要:
An inventive autonomous active manoeuvring method and system 1 for spinning spacecraft is provided having a capability to enhance the AOCMS performance of passive spinning satellites and to fulfil the emerging autonomy requirements applicable to new generation satellites. In broad terms, the invention resides in (a) the overall concept of providing autonomous execution of spin axis re-orientation manoeuvring for spinning spacecraft designed and executed autonomously on-board the spacecraft by the AOCMS and (b) in the proposed strategy set in place to execute the re-orientation manoeuvres with respect to the handling of residual nutation. Advantageously, the provision of coupling nutation avoidance manoeuvres with active nutation damping 8 on board the spacecraft reduces/minimises the manoeuvre settling time required to return the spacecraft to the steady state pointing performance, while not imposing constraints upon the particular spacecraft inertia sensor properties.