摘要:
A method of forming high strength glass fibers in a refractory-lined glass melter, products made there from and batch compositions suited for use in the method are disclosed. The glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O and Na2O, has a fiberizing temperature less than about 2650° F., and a ΔT of at least 80° F. By using oxide-based refractory-lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers produced using a platinum-lined melting furnace. High strength composite articles including the high strength glass fibers are also disclosed.
摘要:
A method of forming high strength glass fibers in a refractory-lined glass melter, products made there from and batch compositions suited for use in the method are disclosed. The glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O and Na2O, has a fiberizing temperature less than about 2650° F., and a ΔT of at least 80° F. By using oxide-based refractory-lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers produced using a platinum-lined melting furnace. High strength composite articles including the high strength glass fibers are also disclosed.
摘要翻译:公开了一种在耐火材料衬里的玻璃熔化器中形成高强度玻璃纤维的方法,其中制备的产品和适用于该方法的批量组合物。 用于本发明方法的玻璃组合物可达64-75重量%的SiO 2,16-24重量%的Al 2 O 3,8-12重量%的MgO和0.25-3重量%的R2O,其中R2O等于 Li2O和Na2O具有低于约2650°F的纤维化温度和至少80°F的“D”; T通过使用氧化物基耐火材料的炉,玻璃纤维的生产成本与 使用铂衬里熔化炉生产的纤维的成本。 还公开了包括高强度玻璃纤维的高强度复合制品。
摘要:
Methods and apparatus for controlling the operation of a burner used for heating liquid glass feeders of a glass furnace. A burner is supplied with a fuel and oxygen. An additional gas is injected so that the sum of the oxygen flow, the fuel flow and the additional gas flow is greater than a minimum cooling flow for the burner.
摘要:
An oxy-fuel burner arrangement having a first conduit having a nozzle aperture with an aspect ratio, D1/D2, of greater than or equal to about 2.0. The first conduit is arranged and disposed to provide a first fluid stream, where the first fluid stream is a combustible fuel. The burner arrangement further includes at least one second conduit arranged and disposed to provide a second gas stream circumferentially around the first fluid stream, where the second gas stream includes oxygen. A precombustor is arranged and disposed to receive the first fluid stream and second gas stream where an oxy-fuel flame is produced. The geometry of the nozzle aperture and the cross-sectional geometry of the first conduit are dissimilar.
摘要:
A front end for a glass forming operation comprises an open channel and at least one burner. The channel has at least one surface. The surface has at least one hole therein. The burner is oriented in the hole at an acute angle relative to the surface. In another embodiment of the invention, the channel has a top and a pair of sidewalls each having a surface. At least one hole is in at least one of the surfaces. The hole is at an acute angle relative to at least one surface. The burner is an oxygen-fired burner. In yet another embodiment of the invention, the top and sidewalls each have a super structure surface constructed of refractory material. The channel has an upstream end and a downstream end. At least one of the surfaces has a plurality of holes therein. The burners extend at an acute angle relative to at least one surface and in a plane extending between the upstream end and the downstream end and perpendicular to at least one surface. Oxygen-fired burners extend axially through corresponding holes.
摘要:
A low firing rate oxy-fuel burner which may be comprised of commercially available standard components and which includes an oxidant conduit and a fuel conduit within the oxidant conduit. The fuel conduit has a fuel nozzle at the forward end thereof with a fuel swirler in the form of a twist drill positioned therein which is maintained in a an aerodynamically centered position by the flowing fuel stream. The oxidant conduit has an oxidant nozzle at the forward end thereof with an oxidant swirler in the form of helical spring position therein and surrounding the fuel nozzle.
摘要:
A method of making glass articles, wherein glass flows from a furnace, through a distribution channel, and then to forming means, the method comprising forming at least one oxy/fuel flame at the sides of the distribution channel, the flame having a hottest point within about five inches of the base of the flame so as to produce a large thermal gradient between the sides of the distribution channel and the center of the distribution channel. A novel distribution channel and a method and apparatus for producing an oxy/fuel flame having a hottest point within about five inches of the base of the flame are also disclosed.
摘要:
There is disclosed an oxy/fuel burner with a low volume fuel stream. The burner projects a stream of fuel from a fuel orifice and projects an annular stream of oxygen around the stream of fuel from an annular oxygen orifice such that the oxygen velocity to gas velocity ratio is between 1/1 and 3/1, providing a flame whose hottest point is about 5 inches from the fuel orifice.
摘要:
A method for heating a liquid glass channel of a glass fiber tank furnace. The method comprises: passing oxygen gas and a fuel, via a burner (1), into a channel space (3) for combustion to heat the channel space (3) and a liquid glass (2), wherein the flow rate of the fuel is VF and the flow rate of the oxygen gas is VOX such that the relative velocity difference D=(VF−VOX)VF. The temperature of the channel is 0-1500° C., and the relative velocity difference D is kept to 25% or more. A pure oxygen combustion method is used for heating a tank furnace channel to reduce waste gas emission and heat loss, thereby achieving the goals of energy conservation, reduced carbon emissions, and improve environment friendliness. The fuel flow rate, relative velocity difference, and related parameters can be controlled according to the temperature of the channel, providing excellent uniformity and accurate control of the temperature of the channel.
摘要:
A method of forming high strength glass fibers in a refractory-lined glass melter, products made there from and batch compositions suited for use in the method are disclosed. The glass composition for use in the method of the present invention is up to about 64-75 weight percent SiO2, 16-24 weight percent Al2O3, 8-12 weight percent MgO and 0.25-3 weight percent R2O, where R2O equals the sum of Li2O and Na2O, has a fiberizing temperature less than about 2650° F., and a ΔT of at least 80° F. By using oxide-based refractory-lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers produced using a platinum-lined melting furnace. High strength composite articles including the high strength glass fibers are also disclosed.