Abstract:
Method for reducing mercury emissions from coal-fired combustion comprising staging of a combustion unit to remove mercury with fly ash from the flue gas, introducing activated carbon to remove mercury from the flue gas, and collecting the fly ash, activated carbon, and associated mercury in a particulate control device.
Abstract:
Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.
Abstract:
Method for reducing mercury emissions from coal-fired combustion comprising staging of a combustion unit to remove mercury with fly ash from the flue gas, introducing activated carbon to remove mercury from the flue gas, and collecting the fly ash, activated carbon, and associated mercury in a particulate control device.
Abstract:
A method is disclosed for reducing the NOx emission of fossil fuel burners. The method creates fuel-rich and fuel-lean zones within the boiler to enhance the removal of NOx species by creating a plurality of NOx reducing precursors.
Abstract translation:公开了一种用于减少化石燃料燃烧器的NO x排放的方法。 该方法在锅炉内产生富燃料和无燃料的区域,以通过产生多个NO x X 3还原前体来增强NO x 2物质的去除。
Abstract:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
Abstract:
There is disclosed a solid fuel boiler including: a furnace including a plurality of solid fuel burners and a furnace wall to perform horizontal firing; a duct through which a part of combustion exhaust gas recirculates to a furnace from a downstream side of the furnace; heat exchanger tubes disposed on a furnace wall and in a heat recovery area of the furnace; and recirculation gas ports via which the recirculation gas is supplied to a reducing flame portion of the burners in the furnace without combining the gas with a flame in the vicinity of an outlet of the burner, so that molten ash is prevented from firmly sticking to the furnace wall and thermal NOx, fuel NOx, and unburned carbon.
Abstract:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
Abstract:
The invention relates to a combined fluidized bed and pulverized coal combustion method and system. In the method, fluidizing air (4) is injected into a fluidized bed (2) situated in the bottom portion of the combustion chamber (3). Into the combustion chamber, to above the fluidized bed (2), is fed a mixture of pulverized coal and a carrier gas from a second set of fuel feed means (6) at a mass flow rate which is higher or at least substantially equal to the upper ignition limit of the mixture, and the mixture of the pulverized coal and the carrier gas at least by the fluidizing air (4), and at least a fraction of the fuel fed via the second set of fuel feed means (6) is combusted above the fluidized bed (2).
Abstract:
A system and method for increasing combustion furnace efficiency, including the steps of providing a furnace with a plurality of secondary air injection ducts, asymmetrically positioned in an tangentially reinforcing manner; injecting fuel with substoichiometric primary air through the burners; injecting secondary air through the plurality of secondary air injection ducts; wherein the velocity of the injected air is such that the ratio of the advected air velocity to the furnace width is between about 2 secnull1 to about 150 secnull1; thereby increasing combustion efficiency and reactor efficiency via mixing and rotation of the combustion space.
Abstract:
A tangential fired boiler has a circumferential wall defining a combustion zone and a plurality of fuel inlets disposed along the circumferential wall. The plurality of fuel inlets inject fuel at non-uniform rates in order to produce localized fuel rich, oxygen poor zones and fuel lean,-oxygen rich zones within the combustion zone, and to cause ambient boiler gases to be entrained into and mix with the oxygen poor zone to achieve fuel staging of the boiler.