Abstract:
A fuel distribution manifold comprises an outer shell having an inner surface. The outer shell defines an inlet for receiving fuel from a parent supply line, a base opposite the inlet, a central manifold axis that intersects the inlet, and a plurality of outlets for delivering fuel to offspring fuel lines, each outlet defining a respective outlet axis. In one exemplary embodiment, a fuel distribution manifold also comprises a center-body having an outer surface and being positioned within the outer shell wherein the outer surface of the center-body and the inner surface of the outer shell define a flow-path through which fluid flows from the inlet to the plurality of outlets. In another exemplary embodiment, at least one of the outlets is positioned adjacent to the base and oriented so that its respective outlet axis is rotated relatively to a radial direction that intersects the central manifold axis.
Abstract:
A system includes a mixing assembly configured to mix a liquid fuel and a water to generate a fuel mixture. The fuel mixture is configured to combust in a combustor of a gas turbine. The mixing assembly includes a liquid fuel passage disposed in an integrated housing. The liquid fuel passage is configured to flow the liquid fuel and to exclude liquid traps. The mixing assembly also includes a water passage disposed in the integrated housing. The water passage is configured to flow the water and to exclude liquid traps. The mixing assembly also includes a mixer disposed in the integrated housing and coupled to the liquid fuel passage and the water passage. The mixer is configured to mix the liquid fuel and the water to form the fuel mixture.
Abstract:
A split control unit in a distributed flow unit includes a flow inlet configured to receive a fuel flow, a first manifold having flow lines to supply fuel to one or more primary nozzles, and a second manifold having flow lines to supply fuel to one or more secondary nozzles. In an embodiment, the second manifold is in fluid communication with the flow inlet. A metering valve has a first port in fluid communication with the flow inlet and with the second manifold. The metering valve is configured to supply a metered fuel flow to the first manifold. A flow passage is in fluid communication with, and runs between, a flow line of the first manifold and a flow line of the second manifold to allow for a continuous cooling flow in the second manifold when all of the one or more secondary nozzles are closed.
Abstract:
A fuel injection system has a fuel lance for supplying gaseous fuel to the burner of a gas turbine engine. The fuel lance includes a gas sensor that is used to monitor the concentration of the methane fuel inside the gas pilot channel of the fuel lance. The invention prevents overheating caused by the ignition of the methane fuel inside the fuel lance by monitoring the concentration of the methane fuel during the purge sequence and taking action if a critical fuel air mixture is reached.
Abstract:
A fuel staging system comprises a splitter valve arranged to split an input fuel stream into a pilot fuel stream and a main fuel stream, the splitter valve comprising a spool slidable within a bore, the spool and bore together defining first and second control chambers, the fluid pressures in which determine the position occupied by the spool, the system further comprising a control line which, in use, controls fuel delivery through a plurality of main burners, the fluid pressure in the control line being a combination of the fluid pressures in the first and second control chambers.
Abstract:
What are described are a multiple burner arrangement and a method for operating such a multiple burner arrangement with a multiplicity of individual burners which are designed as premix burners and which serve for firing a combustion chamber of a thermal engine and each have a swirl space into which combustion supply air and fuel can be introduced so as to form a swirl flow, the swirl flow forming downstream of the premix burner, within the combustion chamber, a backflow zone in which a burner flame is formed.
Abstract:
A multiple conduit system for a gas turbine engine, the multiple conduit system extending between a plurality of conduit inlet and outlets. A channel, adapted for conveying fuel flow, is formed in a surface of a gas turbine engine component. The channel includes at least a first discrete conduit and a second discrete conduit. The first and second discrete conduits are each adapted to direct an independent fluid flow from respective inlets to respective outlets.
Abstract:
Each combustor for a gas turbine includes a fuel supply line for supplying fuel to a plurality of nozzles in the combustor. A remotely controlled valve has a valve member movable between valve-open and valve-closed positions. In a valve-closed position, fuel is supplied to a first group of one or more nozzles of the combustor, while fuel is cut off to a second group of one or more nozzles of the combustor. In a valve-open position, fuel is supplied to all nozzles of the combustor. By positively and selectively actuating the valve, the fuel/air ratio of the nozzles supplied by the fuel is increased to enhance flame stability.
Abstract:
This invention relates to a fluid-distribution apparatus in which one main fluid inlet flow is divided substantially equally between a number of outlets for example as the feeding of a plurality of burners on a gas turbine engine from a single fuel supply. At low total flow rates the difference in height of the various outlets can adversely effect the equality of distribution of liquid between the outlets and it is known to provide a restrictor in series with each outlet to improve the flow division between the outlets. However, where there is a large range of flow rates, the simple restrictors which are effective at low flow rates will cause a very substantial pressure loss at high flow rates. Further a simple restrictor essentially involves a passage of small cross-section which can become blocked by solid particles within the liquid. The present invention substitutes vortex chamber devices for the simple restrictors, arranged to provide a predetermined unique relation between flow rate and pressure drop to ensure effective equalization at low flow rates and to require only a moderate pressure drop at high flow rates. The vortex chamber devices further are less liable to blockage by solid particles.
Abstract:
A multi-tube burner system for efficient mixing of fuel and air for combustion is disclosed. The multi-tube burner system includes an air supply plenum, a multi-tube burner, and a combustor. Further, the multi-tube burner includes a set of tubes including the air supply section to receive combustion air and supply the received combustion air to a mixing section. Furthermore, the multi-tube burner includes a set of fuel pipes to receive fuel from a set of fuel inlets and supply the received fuel to a set of fuel plenums. Furthermore, a pair of fuel receiving channels receive the fuel from the set of fuel plenums and a fuel injector pin injects the received fuel from the pair of fuel receiving channels to the mixing section. Further, a set of mixing holes allow egression of the combustion air and the fuel mixture from the mixing section to the combustor.