Abstract:
A gas under pressure enters a single counter-flow heat exchanger haVing a high pressure entrance side and a low pressure exhaust side, the gas from the high pressure side being connected in parallel to a number of Ranque tubes in which the gas expands. The hot and cold streams from the tubes are connected along the length of the low pressure side of the heat exchanger to progressively cool gas in the high pressure side until a small percentage of the gas can be flashed to liquid for storage.
Abstract:
The invention relates to a method for storing and recovering energy, according to which a condensed air product (LAIR) is formed in an energy storage period, and in an energy recovery period, a pressure flow is formed and is expanded to produce energy using at least part of the condensed air product (LAIR) without a supply of heat from an external heat source. The method comprises inter alia, for the formation of the condensed air product (LAIR): the compression of air (AIR) in an air conditioning unit (10), at least by means of an adiabatically operated compressor device (12); the formation of a first and a second sub-flow downstream of the adiabatically driven compressor device (12), said flows being formed from the air (AIR) that has been compressed in said device and the guiding of the first and second sub-flows in parallel through a first thermal store (131) and through a second thermal store (132), in which stores heat produced during the compression of the air (AIR) is at least partially stored. For the formation of the pressure flow, a vaporized product (HPAIR) is produced inter alia from at least one part of the condensed air product (LAIR). During the energy-producing expansion process, the pressure flow is guided through a first expansion device (61) and a second expansion device (62) and is thus expanded in each device. Heat stored in the first heat store device (131) is transferred to the pressure flow upstream of the first expansion device (61) and heat stored in the second heat store device (132) is transferred to the pressure flow upstream of the second expansion device (62). The invention also relates to an installation (100).
Abstract:
Liquid air energy storage (LAES) systems with increased efficiency and operating profit obtained through rational selection and configuration of the equipment used and optimization of the configuration/parameters of such equipment. In various embodiments, the LAES system is intended for operation preferably in an environmentally-friendly stand-alone regime with recovery of hot thermal energy extracted from compressed charging air and cold thermal energy extracted from discharged air.
Abstract:
A method for producing liquid natural gas (LNG) includes the following steps. Compressor stations forming part of existing natural-gas distribution network are identified. Compressor stations that are geographically suited for localized distribution of LNG are selected. Natural gas flowing through the selected compressor stations is diverted to provide a high pressure first natural gas stream and a high pressure second natural gas stream. A pressure of the first natural gas stream is lowered to produce cold temperatures through pressure let-down gas expansion and then the first natural gas stream is consumed as a fuel gas for an engine driving a compressor at the compressor station. The second natural gas stream is first cooled with the cold temperatures generated by the first natural gas stream, and then expanded to a lower pressure, thus producing LNG.
Abstract:
A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO2 from a liquid NG process stream and processing the CO2 to provide a CO2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
Abstract:
A process and an apparatus for liquefying a portion of a natural gas stream are disclosed. The natural gas stream is cooled under pressure and divided into a first stream and a second stream. The first stream is cooled, expanded to an intermediate pressure, and supplied to a lower feed point on a distillation column. The second stream is expanded to the intermediate pressure and divided into two portions. One portion is cooled and then supplied to a mid-column feed point on the distillation column; the other portion is used to cool the first stream. The bottom product from this distillation column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas, so that the overhead vapor from the distillation column contains essentially only methane and lighter components. This overhead vapor is cooled and condensed, and a portion of the condensed stream is supplied to a top feed point on the distillation column to serve as reflux. A second portion of the condensed stream is expanded to low pressure to form the liquefied natural gas stream.
Abstract:
A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
Abstract:
A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.