Abstract:
An apparatus for non-intrusively sensing fluid flow within a pipe is provided. The apparatus includes an array of sensors that include a plurality of optical fiber coils. The array of sensors senses the fluid flow inside the pipe. At least one optical reflective device is disposed between adjacent optical fiber coils. An isolation pad is disposed between each optical reflective device and the pipe.
Abstract:
A device is described wherein a length of a optical fiber embedded within a composite matrix, in particular within a similar length of a prepreg tow. The fiber is nullsandwichednull by two layers of the tow which are merged to form a single consolidated block. The consolidated block achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from nullpoolingnull around the periphery of the fiber.
Abstract:
A composite-construction roll, includes a roll frame reinforced with reinforcing fibers, and a method for manufacturing such a roll. There is at least one optical fiber among the reinforcing fibers and the roll includes terminals arranged in this optical fiber for a transmitter and a receiver for measuring a selected optical quantity from the fiber.
Abstract:
An apparatus and method for determining a physical parameter affecting an optical sensor or a number of sensors in a network. The apparatus uses a narrow linewidth source at an emission wavelength nulle and an arrangement for varying the emission wavelength nulle of the radiation. An analysis module with curve fitting is used to generate a fit to the response signal obtained from the optical sensor. The physical parameter is determined form the fit rather than from the response signal. The apparatus can be employed with Bragg gratings, etalons, Fabry Perot elements or other optical sensors.
Abstract:
An interchangeable low-backscatter aperture structure includes but is not limited to an aperture insert that is releasably engaged in a base. The aperture insert includes an aperture that may be of any shape. For example, the aperture may comprise a slit or it may be circular. The aperture insert may be held in the base by any securing mechanism capable of releasably securing the insert to the base. In one embodiment the securing mechanism includes a plurality of pressure clips.
Abstract:
A confocal probe emits a scanning beam to a target and receives light returned therefrom to obtain an image thereof. The confocal probe has a chamber accommodating an optical system. The optical system includes an optical fiber through which a light beam is introduced to the optical system, a converging lens that converges the light beam introduced by the optical fiber, an optical element having a light incident surface, a first surface and a light emerging surface which statically define an optical path of the light beam, and a deflecting device mounted on the first surface of the optical element. The light beam enters the optical element through the light incident surface, enters the deflecting device through the first surface, and is dynamically deflected by the deflecting device. The deflected beam is output through the light emerging surface, as the scanning beam, toward the target.
Abstract:
To provide an optical fiber strain sensor device and a strain detection method, for measuring precisely AE and for detecting effectively a rapid strain change due to a shock load, an optical fiber strain sensor device includes an FBG sensor mounted on an object to be measured, a broadband light source for directing a broadband wavelength light ray to the FBG sensor, and an FBG filter that reflects or transmits a light ray reflected from the FBG sensor, and, using the FBG filter, the optical fiber strain sensor device processes and detects a change in the center wavelength of the light ray that has been incident from the broadband light source and then has been reflected from the FBG sensor.
Abstract:
A fiber optic control system for controlling remotely located devices. The control system includes an illumination source for producing a light beam and a plurality of optical fibers. Each fiber is arranged to receive a respective portion of a light beam at a coupling end. A planar light switch, including a plurality of light attenuating pixels, is positioned between the illumination source and the optical fiber coupling ends. Each of the pixels of the planar light switch is electronically controllable for selectively coupling portions of the light beam to respective coupling ends of the optical fibers. A plurality of light activated circuits are optically coupled to a respective illumination ends of the optical fiber. The light activated circuits are responsive to the respective portion of the light beam radiated from the respective illumination ends for providing a control signal to a remotely located device.
Abstract:
A optical fiber sensor for measuring temperature and/or pressure employs temporally created long period gratings. The gratings may be produced by a periodic change in the refractive index of the fiber along the fiber longitudinal axis caused by periodically spaced compressive and/or expansive forces or by spaced-apart unbalanced forces that cause periodic fiber micro-bending. Pressure and temperature are determined by measuring changes in both the wavelength at which light is coupled from a mode guided by a core to a different mode and an amount of such coupling. The gratings are created intrinsically and extrinsically. Single and multiple core fibers are used.
Abstract:
The invention relates to a tactile sensor capable of obtaining information for a plurality of degrees of freedom at each point on a surface by introducing multi-channel sensing that uses color or optical spectrum to an optical tactile sensor. An optical tactile sensor is provided with a tactile section and imaging means, the tactile section comprising a transparent elastic body and a plurality of groups of markers provided inside the elastic body, each marker group being made up of a number of colored markers, with markers making up different marker groups having different colors for each group, and behavior of the colored markers when an object touches the elastic body being photographed by the imaging means. Preferably, the marker groups have mutually different spatial arrangements.