Abstract:
A fan-shaped beam of penetrating radiation, such as X-ray or .gamma.-ray radiation, is directed through a slice of the body to be analyzed to a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source.
Abstract:
A helical multiwire proportional chamber for detection of minimum ionizing particles consisting of an array of anode wires surrounded by a cathode wound in the form of a bifilar flattened helix nearly orthogonal to the anode wires and this chamber having an active area rectangular in shape, a frame comprising two pieces of plexiglass with a central cutout which forms the said active area, the anode wires being fastened to one of the frame pieces and the second frame piece being fastened to the first and the anode wires being connected in parallel to a positive high voltage supply and the cathode wire being connected to ground through a resistor.
Abstract:
An ion filter used for an electron multiplier includes an insulating substrate; a first conductive layer formed on one main surface of the substrate; and a second conductive layer formed on another main surface of the substrate. The ion filter has a plurality of through-holes formed along a thickness direction of the substrate. The one main surface of the substrate is disposed at a downstream side in a moving direction of electrons in a chamber of the electron multiplier and the other main surface of the substrate is disposed at an upstream side in the moving direction of electrons in the chamber of the electron multiplier. A first thickness of the first conductive layer formed on the one main surface of the substrate is thicker than a second thickness of the second conductive layer on the other main surface of the substrate.
Abstract:
A radioactive gas measurement apparatus comprises: a radiation measurement cell comprising an inlet pipe and a discharge pipe, the radiation measurement cell introducing and discharging a radioactive gas containing a nuclide to be measured and a positron emitter nuclide through the inlet pipe and the discharge pipe; a radiation detector for measuring a radiation generated from the radioactive gas; and a radiation collimator allowing the radiation measurement cell to communicate with the radiation detector and setting a predetermined radiation measurement geometry condition between the radiation measurement cell and the radiation detector. Then, as the predetermined radiation measurement geometry condition, an inner wall area of the radiation measurement cell which the radiation detector views through the radiation collimator is set equal to or less than a half of a total inner wall area of the radiation measurement cell.
Abstract:
The invention relates to an improved method for fabricating the amplification gap of an avalanche particle detector in which two parallel electrodes are spaced apart by dielectric spacer elements. A foil including a bulk layer made of dielectric material sandwiched by two mutually parallel metallic electrodes is provided, and holes are formed in one of the metallic layers by means of photolithography. The amplification gap is then formed in the bulk layer by means of carefully controlled etching of the bulk material through the holes formed in one of the metallic layers. The invention not only provides a simplified fabrication process, but also results in a detector with enhanced spatial and energy resolution.