Abstract:
An optical fiber connector including a connector housing having a front portion and a rear portion is disclosed. A ferrule is disposed in the connector housing such that it projects from the front portion of the connector housing. The rear portion of the connector housing includes a first channel configured to receive an optical fiber of an optical cable and to couple the optical fiber to the ferrule, and a second channel configured to receive a strength member of the optical cable. The optical fiber connector may be an ingress protected optical fiber connector, and may have an outside diameter less than about 15.8 mm, such as about 14 mm.
Abstract:
Reduced-profile connection components are described. The reduced-profile connection components are configured to connect various data transmission elements, including cables, network devices, and computing devices. A non-limiting example of a connection component includes a fiber optic connection component, including connectors, adapters, and assemblies formed therefrom. In some embodiments, the connection components may include mechanical transfer (MT) and multi-fiber push-on/pull-off (MPO) connection components, such as MT ferrules and MPO adapters. The reduced-profile connection components configured according to some embodiments have a smaller profile and/or require less parts to achieve a connection compared to conventional connection components. In some embodiments, the reduced-profile connection components may be used with conventional connection components. For example a reduced-profile connector may use a conventional MT ferrule to establish a connection within a conventional MPO adapter.
Abstract:
Multi-fiber ferrules may be produced with tapered bodies and guide pin holes that have fluted internal surfaces with projections for engaging the guide pins, and channels for capturing any foreign material that may accumulate on or around the guide pins, thereby providing improved consistency in fiber connections during mating of the ferrules.
Abstract:
Reduced-profile connection components are described. The reduced-profile connection components are configured to connect various data transmission elements, including cables, network devices, and computing devices. A non-limiting example of a connection component includes a fiber optic connection component, including connectors, adapters, and assemblies formed therefrom. In some embodiments, the connection components may include mechanical transfer (MT) and multi-fiber push-on/pull-off (MPO) connection components, such as MT ferrules and MPO adapters. The reduced-profile connection components configured according to some embodiments have a smaller profile and/or require less parts to achieve a connection compared to conventional connection components. In some embodiments, the reduced-profile connection components may be used with conventional connection components. For example a reduced-profile connector may use a conventional MT ferrule to establish a connection within a conventional MPO adapter.
Abstract:
A very small form factor multifiber fiber optic connection system includes an adapter and mating connectors with complementary prealignment features for prealigning multifiber ferrules in the adapter to prevent guide pin stubbing. The adapter has a prealignment feature formed on at least one interior side of each individual connector port and the connectors have a complementary prealignment formation along a side wall of the connector housing assembly. Each prealignment feature slidably engages the prealignment formation of a fiber optic connector as the fiber optic connector is inserted into the individual connector port to prealign a multifiber ferrule of the fiber optic connector in the adapter.
Abstract:
Connectors for a multiport assembly are disclosed. The multiport assembly can include a multiport device that communicatively couples multiple sets or pairs of connectors, such as optical connectors, together. The connectors include securing features to inhibit unintentional withdrawal of the connectors from the multiport device.
Abstract:
A field installable fiber optic connector for use with polymer optical fibers includes a housing that releasably connects to another optical device. A mechanical termination assembly is located in the housing to mechanically terminate a plurality of individual fibers of the polymer optical fibers. Ferrules are supported by the housing. Each ferrule is positioned to receive one of the individual fibers from the mechanical termination assembly.
Abstract:
A connection system for a printed circuit board employs either an inline or transverse board-mounted connector for holding board-mounted optical fibers. A plug-in connector can blind mate with the board-mounted connector. The plug-in connector has a plug-in connector body, a plug-in ferrule, and a plug-in ferrule holder. The plug-in holder latches with the plug-in connector body at either of two positions to selectively configure the plug-in connector for blind mating with either the inline or transverse board-mounted connector. The board-mounted fibers can be supported by a board-mounted ferrule assembly including a ferrule and a ferrule holder that is configured to selectively attach the board-mounted ferrule assembly to either of an inline board-mounted connector body and a transverse board-mounted connector body.
Abstract:
Fiber optic network systems are implemented, at least in part, using very small form factor (VSFF) interconnect components such as VSFF duplex connector; VSFF mechanical transfer ferrule (MT) connector; VSFF duplex uniboot connector; VSFF MT uniboot connector; VSFF duplex adapter; VSFF MT adapter; VSFF duplex pluggable transceiver; VSFF MT pluggable transceiver; VSFF patch cable assembly; VSFF trunk cable; and/or VSFF breakout cable. The VSFF fiber optic network systems can define fiber breakout cabling that connects large trunk cables to many peripheral network locations. The network systems can define branches and sub-branches from a trunk cable. The network systems can define cross-connect sub-networks between sets of transceivers or adapters. The network systems can define a trunk-to-transceiver cabling assembly for connecting a trunk cable to at least 32 transceiver ports.
Abstract:
A behind-the-wall optical connector having an outer housing configured to be inserted into an adapter with a corresponding inner surface, and a latch is attached to at least one side of housing configured to lock the connecter into an adapter opening. A backbody, an integrated backbody or an external clip retains the ferrule assembly with a ferrule, biased forward toward a proximal end of the connector housing.