Abstract:
The circuit board includes a ceramic sintered body and a metal wiring layer provided on at least one primary surface thereof with a glass layer interposed therebetween, and when the cross section of the circuit board perpendicular to the primary surface of the ceramic sintered body is viewed, the ratio of the length of an interface between the glass layer and the metal wiring layer to a length of the glass layer in a direction along the primary surface is 1.25 to 1.80.
Abstract:
An assembly provides a dual function for mounting a port connector on a circuit board and also secures a capacitor to the circuit board. The assembly includes the circuit board and a monolithic plastic frame having a flange, a snap structure, a capacitor cradle, and a socket section. The flange has a fastening structure for fastening the frame to the circuit board. The snap structure for a snap-in attachment of the port connector to the frame is arranged near an end edge of the circuit board. The capacitor cradle for holding a cylindrical capacitor is formed adjacent to the snap structure and is elevated from the circuit board by an air gap. The socket section bears socket contacts for receiving capacitor contact leads.
Abstract:
A rechargeable battery pack includes a plurality of battery cells, a connection tab electrically coupled to one or more terminals of the battery cells, a connection plate electrically coupled to the connection tab, and having an opening for accommodating a protruding portion of the connection tab, and a protective circuit module electrically coupled to the connection plate, and having a combination groove, wherein the connection plate is on a first surface of the protective circuit module to face the combination groove, and wherein the first surface of the protective circuit module faces the connection tab.
Abstract:
A flexible printed circuit board (FPCB) includes at least one signal pad part disposed at each of a top and bottom of a flexible substrate base and configured to include an upper signal pad and a lower signal pad and a through hole formed at a portion corresponding to a signal via, a signal line disposed at the top of the substrate base, and extending from the upper signal pad along a length direction of the substrate base, an upper ground pad disposed at the top of the substrate base to be separated from the upper signal pad and the signal line near the upper signal pad, and a lower ground pad disposed at the bottom of the substrate base to be separated from the lower signal pad near the lower signal pad, and connected to the upper ground pad through a ground via.
Abstract:
A capacitor holder comprising a body part formed in a shape into which a tip end of a capacitor can be fitted; and a lead part which is fixed to the body part and can be soldered to a predetermined fitting location. The body part has an opening through which the tip end of the capacitor is exposed, and an end surface abutment portion which abuts a tip end surface of the capacitor in a vicinity of a pressure valve, when the tip end of the capacitor is fitted into the body part. The lead part is fixed to the body part at a position opposite to the capacitor with respect to a reference plane, which is a plane includes the tip end surface of the capacitor abutting the end surface abutment portion.
Abstract:
An aluminum electrolytic capacitor includes a main body, two electric leads, and a metal set plate. The main body has a base and a plastic insulating film. The electric leads are located at one end of the base. The metal set plate is located at opposite end, with a connecting portion and a soldering portion. The connecting portion is located at the surface of the other end of the base opposite of the two electric leads. The soldering portion extends outside of the main body. The plastic insulating film wraps around the main body and the outer edge of the connecting portion. Thereby, the metal set plate is secured firmly with the main body. The soldering portion of the metal set plate is soldered onto the printed circuit board, allowing the aluminum electrolytic capacitor to be firmly attached to the printed circuit board.
Abstract:
An ovenized oscillator package including at least a heater and a crystal package mounted on opposite sides of a circuit board. Vias extend through the body of the circuit board to transfer heat from the heater to the crystal package. Layers of thermally conductive material extend through the body of the circuit board and are in thermally coupled relationship with the vias for spreading heat throughout the circuit board and other elements mounted thereon.
Abstract:
Methods and apparatus for accessing a high speed signal routed on a conductive trace on an internal layer of a printed circuit board (PCB) using high density interconnect (HDI technology) are provided. The conductive trace may be coupled to a microvia (μVia) having a conductive dome disposed above the outer layer pad of the μVia. In-circuit test (ICT) fixtures or high speed test probes may interface with the conductive dome to test the high speed signal with decreased reflection loss and other parasitic effects when compared to conventional test points utilizing plated through-hole (PTH) technology.
Abstract:
There are provided an electronic component permitting easy surface mounting onto a circuit board and, a mounted structure and an inverter device therewith.A surface mount type electronic component has a dielectric element body, electrodes, lead conductors, and lead wires. The dielectric element body has principal faces and side faces. One electrode is formed on one principal face, the other electrode is formed on the other principal face, and the electrodes face each other. A first portion of one lead conductor is laid on one side face. A first portion of the other lead conductor is laid on another side face. First portions of the lead wires are connected to the corresponding first portions of the lead conductors.
Abstract:
A lead plate-attached coin-type battery is constituted from a combination of a coin-type battery and a positive lead plate. In the coin-type battery, a negative cap seals the aperture of a positive outer can. In a lateral view, the positive lead plate is crank-shaped, and one end thereof is attached to the outer surface of the positive outer can of the coin-type battery. A lead plate is not attached to the negative cap. One or more projections that project in the Z axis direction are provided on the negative cap. In the lead plate-attached coin-type battery, the positive lead plate and negative cap have been attached to respective conductive lands on a circuit board by a solder reflow method.