Abstract:
A web product embossing apparatus includes a first embossing wheel set formed of multiple embossing wheels and adapted for embossing a raised first embossed pattern on a first web product, a second embossing wheel set adapted for embossing a raised second embossed pattern on a second web product, and a plurality of glue applicators disposed adjacent to the first embossing wheel set and adapted for applying different glues having different colors to different pattern units of the raised first embossed pattern for enabling the first web product and the second web product to be bonded together to form an embossed colorful finished web product.
Abstract:
A device for producing a multi-ply fibrous product includes an embossing roll with first and second embossing protrusions on its outer circumferential surface having at least two different heights in a radial direction, an anvil roll cooperating with the embossing roll, an application roll for applying colored adhesive or ink arranged next to the embossing roll, and a marrying roll or another embossing roll running against the embossing roll, wherein the application roll forms a negative gap with the outer diameter of the embossing roll, and the negative gap exceeds the difference in height of the first and second protrusions. A method for producing a multi-ply fibrous product and a multi-ply fibrous product are also described.
Abstract:
Device for treating paper webs or plies, comprising a couple of overlapped rolls (2,3) for compressing a paper web or ply passing between them. Each of said rolls (2,3) features a fixed central shaft (20,300) supported by a corresponding holder (10,83) at its ends, on which shaft a tubular jacket is fitted, with the interposition of low-friction connecting members (21,310) which are positioned on opposite sides with respect to the center line of the fixed central shaft axis, so that said tubular jacket, which is destined to come into contact with the paper webs or plies to be treated, is free to rotate about its longitudinal axis.
Abstract:
A multi-ply absorbent sheet of cellulosic fiber with continuous outer surfaces is provided an absorbent core between the outer surfaces. The absorbent core includes a non-woven fiber network having: (i) a plurality of pileated fiber enriched regions of relatively high local basis weight interconnected by way of (ii) a plurality of lower local basis weight linking regions whose fiber orientation is biased along the direction between pileated regions interconnected thereby, and (iii) a plurality of fiber-deprived cellules between the fiber enriched and linking regions, also being characterized by a local basis weight lower than the fiber enriched regions. The cellules provide a sponge-like internal structure of low fiber density regions.
Abstract:
A method relates to the production of paper rolls for examination tables, obtained from a tape (100) of embossed paper, having two layers (10, 20), joined together. The band (100) is obtained in known way from two continuous webs (1, 2), subjected to subsequent steps of embossing, glue (C) application, coupling and stabilization. The method includes applying measured quantities of a sanitizing and/or disinfectant substance (S) between the two layers of embossed paper (10, 20) before their joining; preferably, the substance (S) is applied to the same continuous web (1) that is aimed at receiving the glue (C), after the embossing step and contemporarily with the glue (C) application, by spot-application of a mixture (M) in aqueous solution containing suitable percentage of the glue (C) and sanitizing substance (S) to the tops (11A) of the embossing relieves (11.) In this case, the application means (240) for sanitizing substance (S) are formed by the same means (220) for applying the glue (C).
Abstract:
A multi-ply absorbent sheet of cellulosic fiber with continuous outer surfaces is provided an absorbent core between the outer surfaces. The absorbent core includes a non-woven fiber network having: (i) a plurality of pileated fiber enriched of relatively high local basis weight interconnected by way of (ii) a plurality of lower local basis weight linking whose fiber orientation is biased along the direction between pileated interconnected thereby, and (iii) a plurality of fiber-deprived cellules between the fiber enriched and linking regions, also being characterized by a local basis weight lower than the fiber enriched regions. The cellules provide a sponge-like internal structure of low fiber density regions.
Abstract:
A process for manufacturing a multi-ply paper product, the process having the steps of: providing a first paper web; providing a second paper web; and providing an apparatus. The apparatus includes: a first pressure roll; an embossing roll; a marrying roll; and a second pressure roll. The embossing roll has a plurality of embossing protrusions wherein each embossing protrusion has a distal end. The first pressure roll and the embossing roll are juxtaposed in an axially parallel relationship to form a first nip therebetween. The first nip has a first nip width. The first pressure roll and the embossing roll are adapted to receive a first paper web at the first nip. The adhesive application roll and the embossing roll are juxtaposed in an axially parallel relationship to form a gap therebetween. The adhesive application roll and the embossing roll are adapted to receive the first paper web, after the first paper web has traversed the first nip, at the gap. The marrying roll is juxtaposed in an axially parallel relationship with the embossing roll to form a third nip therebetween. The marrying roll and embossing roll are adapted to receive the first paper web and a second paper web, after the first paper web has traversed the gap, and marry the first paper web to the second paper web at the third nip. The second pressure roll and the embossing roll are juxtaposed in an axially parallel relationship to form a third nip therebetween, wherein the second nip has a second nip width, and wherein the second pressure roll and embossing roll are adapted to receive the first paper web and the second paper web, after the first paper web and the second paper web have traversed the third nip, at the second nip. The process also includes the steps of: forwarding the first paper web through the first nip such that portions of the first paper web are embossed at the first nip to provide an embossed first paper web; forwarding the embossed first paper web through the gap such that the embossed portions of the first paper web receive adhesive from the adhesive application roll to provide an adhesively provided first paper web; forwarding the adhesively provided first paper web and the second paper web through the third nip such that the embossed, adhesively provided portions of the first paper web are married to portions of the second paper web to form a multi-ply paper product; forwarding the multi-ply paper product through the second nip such that portions of the multi-ply paper product are embossed to provide an embossed multi-ply paper product.
Abstract:
A multi-ply absorbent sheet of cellulosic fiber with continuous outer surfaces is provided an absorbent core between the outer surfaces. The absorbent core includes a non-woven fiber network having: (i) a plurality of pileated fiber enriched regions of relatively high local basis weight interconnected by way of (ii) a plurality of lower local basis weight linking regions whose fiber orientation is biased along the direction between pileated regions interconnected thereby, and (iii) a plurality of fiber-deprived cellules between the fiber enriched and linking regions, also being characterized by a local basis weight lower than the fiber enriched regions. The cellules provide a sponge-like internal structure of low fiber density regions.
Abstract:
A patterned element for use in an embossing and adhesive application process. The patterened element comprises a material having an pattern disposed thereon, wherein the material comprises a polymer and has a Shore A hardness of greater than about 70, and has a critical surface energy of less than about 30 dynes/cm.
Abstract:
A patterned element for use in an embossing and adhesive application process. The patterened element comprises a material having an pattern disposed thereon, wherein the material comprises a polymer and has a Shore A hardness of greater than about 70, and has a critical surface energy of less than about 30 dynes/cm.