Abstract:
The different advantageous embodiments comprise an apparatus comprising an airbag. The airbag is configured to inflate into a configuration that covers a region around a seat in which a top of a head, a front of a head, upper body region, knees, and shins of a passenger in the seat is expected to be located when an event occurs in which the airbag is deployed.
Abstract:
An aircraft (11) with at least an inflatable device (41) installed in a cavity (21) in its external surface which is equipped with a door (25) for opening/closing said cavity (21) is provided. The inflatable device (41), comprising a cushion (45) and a gas generator is configured for filling the cavity (21) with the cushion (45) when it is inflated with the gas supplied by said gas generator, without protruding from the cavity (21) for reducing the downstream air flow disturbances generated by said cavity (21) when the door (25) is open. The inflatable device (41) includes control means for inflating the cushion (45) in predetermined circumstances, being the door (25) open. The invention is particularly applicable to the cavities of the Main Landing Gear (31) for avoiding power losses to a Ram Air Turbine (51) placed behind it.
Abstract:
Described are airbag modules for a passenger door having a door bustle, an airbag positioned adjacent the door bustle, and an inflator positioned adjacent the door bustle. As examples, a pneumatic system is coupled to the inflator and the airbag, wherein the pneumatic system includes a slide lock that is configured to couple a girt bar of an escape slide to a passenger door sill when the inflator is activated. As additional examples, a valve is coupled to an inlet of the airbag, wherein the valve is configured to prevent the pressurized gas from flowing from the inflator to the airbag when the valve is closed and is configured to allow the pressurized gas to flow from the inflator to the airbag when the valve is open.
Abstract:
An impact protection apparatus is provided, comprising a gas container configured to hold a compressed gas and an inflatable member configured to be inflated by the gas and function as an airbag of a movable object, such as an aerial vehicle. A valve controls flow of gas from the container to the inflatable member in response to a signal from a valve controller. The valve and valve controller are powered by an independent power source than one or more other systems of the movable object. A safety mechanism may also be provided that, unless deactivated, prevents inflation of the inflatable member.
Abstract:
Embodiments of the present invention provide an airbag door assembly for use in a vehicle. The door assembly includes a moving door panel that deforms under pressure of an airbag as it deploys. The airbag system employing this airbag door assembly may be installed in a cavity in a structure on-board the vehicle, or it may be independently mounted to a vehicle structure.
Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
A method for emergency landing of a vehicle, such as a helicopter or like, is described. The vehicle has at least one airbag provided with a respective opening valve for allowing the outflow of the gas therein contained. The airbag is suitable to cushion the impact of the vehicle with ground, and is inflated for an emergency landing. The method checks the conditions for the emergency landing of the vehicle, detects the maximum or impact speed of the vehicle, and opens the opening valve after the detection of an activation speed of the vehicle, so as to deflate the airbag. A system for controlling airbags of a vehicle, such as a helicopter or like, is also described.
Abstract:
An impact protection apparatus is provided, comprising a gas container configured to hold a compressed gas and an inflatable member configured to be inflated by the gas and function as an airbag of a movable object, such as an aerial vehicle. A valve controls flow of gas from the container to the inflatable member in response to a signal from a valve controller. The valve and valve controller are powered by an independent power source than one or more other systems of the movable object. A safety mechanism may also be provided that, unless deactivated, prevents inflation of the inflatable member.
Abstract:
A device for absorbing impacts of a parachutist or airdropped package upon landing, which can equip a harness, and/or a skydiver or dropping pallet for performing the aircraft jump without any risk of interferences, allows, during the aircraft exit and free fall, to hold, neutralized in a reduced volume, an air-inflatable airbag, for deployment during the canopy descent. It includes a container back pad hooked to the harness and/or to the user or to the dropping pallet, which can be made removable by straps and bridles, in which an airbag is arranged such that its air scoop is closed by flaps locked by a cutaway cable. When the user exerts an action on the opening handle or when the parachute opens, the cable separates the flaps, allowing to unballast the airbag and open the air scoop to the air flow from the movement of the harness during the descent.