Abstract:
A modal restraint system for an occupant of a seat of an aircraft having a mechanical failure sensor includes a strap feeder unit and a strap selectively retractable into and extendable from the strap feeder unit. The strap is positionable adjacent to the occupant. The strap feeder unit is adapted to switch between a plurality of modes including an unfixed mode and a fixed mode. The strap is extendable from and retractable into the strap feeder unit in the unfixed mode. The strap is substantially unextendable from the strap feeder unit in the fixed mode. The strap feeder unit is in the unfixed mode by default. The strap feeder unit is operable to switch to the fixed mode in response to a precautionary event including detection of an aircraft mechanical failure by the mechanical failure sensor, thereby reducing freedom of movement of the occupant relative to the seat.
Abstract:
A modal restraint system for an occupant of a seat of an aircraft having a mechanical failure sensor includes a strap feeder unit and a strap selectively retractable into and extendable from the strap feeder unit. The strap is positionable adjacent to the occupant. The strap feeder unit is adapted to switch between a plurality of modes including an unfixed mode and a fixed mode. The strap is extendable from and retractable into the strap feeder unit in the unfixed mode. The strap is substantially unextendable from the strap feeder unit in the fixed mode. The strap feeder unit is in the unfixed mode by default. The strap feeder unit is operable to switch to the fixed mode in response to a precautionary event including detection of an aircraft mechanical failure by the mechanical failure sensor, thereby reducing freedom of movement of the occupant relative to the seat.
Abstract:
An inflatable head restraint system for a parachute assembly may comprise an inflatable volume configured to inflate in response to a deployment of the parachute assembly. The inflatable volume may be located between a left shoulder riser and a right shoulder riser of the parachute assembly. A conduit may be fluidly coupled to the inflatable volume.
Abstract:
A monument is configured to be positioned within an internal cabin of a vehicle. The monument includes a deployable portion. The deployable portion is configured to move from a non-deployed state into a deployed state when a force that meets or exceeds a predetermined threshold is exerted into the monument wall assembly.
Abstract:
An airbag assembly for leg flail protection and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present technology can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag stowed within the cavity, and an inflator operably coupled to the airbag. The airbag can be configured to deploy through the opening of the housing during a crash or other significant dynamic event. The airbag can deploy outwardly from the side-facing seat to reduce occupant leg rotation during the crash or other significant dynamic event. The airbag can be pushed out of the housing before it is fully inflated. The airbag can be stowed and include folded first and second opposing side portions such that when the airbag is deployed, the portion nearest the occupant unfurls toward the occupant prior to the other portion farthest from the occupant unfurling in a direction away from the occupant.
Abstract:
A safety seat for land vehicles, aircraft and watercraft, having a seat part frame, and a backrest frame suspended on a restraint or suspension strap firmly attached to the vehicle, wherein the backrest frame has a lateral or transverse strut, and an additional holding strap clamps the lateral strut in. A separate mounting frame is provided to fix the restraint strap and the holding strap, and can be mounted in the vehicle, wherein bushing or guide-through eyes and attachment eyes for stretching the restraint strap and the holding strap are provided on the oppositely disposed lateral or transverse supports of the mounting frame, and wherein the holding strap is formed integrally, is fixed by its two ends to two attachment eyes, and is looped through, and passed back and forth between, a plurality of bushing eyes.
Abstract:
The safety seat according to the invention contains a lower fastening 5 structure (5), seat surface, squab and head support (9) and safety belt, and further it is provided with a casing (1) surrounding said seat surface (8), squab and head support (9), having an egg shape and being provided with a door (2) form-fitting on said casing (1) and rotatable in horizontal direction. The safety seat is provided with air-bags (10, 11) and there is a weakened part or a releasable lock 10 between the lower fastening structure (5) and the casing (1), releasing in answer to shock like load. (FIG. 1)
Abstract:
Disclosed is a trolley assembly that is adapted to be used with a passenger restraint, such as a locking reel. The trolley assembly allows the reel lock to be securely positioned at any of a number of discrete locations along the length of an associated track. A mechanism is included for permitting the user to selectively lock and unlock the trolley as needed.
Abstract:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
Abstract:
In a preferred embodiment, a restraint system is described for restraining a standing occupant in a vehicle such as a plane or helicopter. The restraint system includes a webbing strap that winds and unwinds from a spool assembly. The spool assembly includes a trigger assembly that locks a spool from rotation, a manual release assembly for manually releasing the trigger assembly and lock, and an adjustable payout assembly that determines the maximum length that the webbing strap can be pulled out before stopping (i.e., the number of rotations of the spool). The trigger assembly can trigger the lock assembly from one or more sensors. Further, the trigger assembly can be arranged to automatically unlock after a triggering event, manually unlocked after a triggering event or a combination of the two for different sensors.