Abstract:
Diagnosis for GOOSE communication is provided. The embodiments of the present invention provide a method, an apparatus, a system and a computer program product of diagnosis for logic of a distributed application implemented based on Generic Object Oriented Substation Event (GOOSE). The method comprises: creating at least one logic diagnosis module based on a data model for the distributed application; obtaining GOOSE signal information; and executing the at least one logic diagnosis module based on the GOOSE signal information. According to the embodiments of the present invention, a feasible way is provided for diagnosing and/or analyzing the logic of GOOSE-based application online or offline.
Abstract:
A socket is provided for removing or installing a fastener having a hexagonally shaped portion. The socket includes a body having a longitudinal axis and opposing first and second ends. First surfaces define a tool-receiving portion at the first end. The tool-receiving portion is constructed and arranged to receive a portion of a tool. Second surfaces define a socket portion at the second end. The socket portion is constructed and arranged to receive and engage the portion of the fastener therein. Holding structure is associated with the socket portion and is constructed and arranged to non-magnetically hold the portion of the fastener in the socket portion so as to not fall out of the socket portion, either due to friction or vacuum, without providing torque to the fastener when the socket is rotated during installation or removal of the fastener.
Abstract:
A method and device are disclosed for supervising the operation of plural current transformers and for prevention of a malfunction, such as false tripping of power in an electrical system. Exemplary embodiments can include measuring current parameters (e.g., magnitude and phase angle) for each winding in current transformer (CT) sets. A negative sequence current can be calculated from measured phase currents and a fault condition determined. A phase angle difference parameter derived from phase measurements between two healthy CTs can be used as an additional condition parameter for reliable operation of equipment in the electrical system.
Abstract:
An interface is disclosed for a self powered protection relay that uses mechanical switches for its configuration. The protection relay can include a base relay for measurement of line current and for generation of a trip signal, and a Human Machine Interface (HMI) unit for specifying, by a user, a base setting of an operating parameter of the protection relay. The base relay can be self-powered from the line and the HMI unit can include an auxiliary power supply. The protection relay is configured with mechanical switches provided in the protection relay. The HMI unit in the protection relay is designed to detect and alert the user of the relay of any change in the base setting carried out with one or more mechanical switches provided in the relay in powered and unpowered conditions of the base relay.
Abstract:
Technologies for individualized building automation include a building automation application server, a building controller, and several mobile computing devices. Each mobile computing device generates individualized sensor data based on the time and location of the mobile computing device and sensor data indicative of a building system control parameter. The sensor data may include temperature data, humidity data, or other environmental data, and may be received by the mobile computing device from one or more external sensors. The building automation application server receives the individualized sensor data from the mobile computing devices and generates a building system configuration based on the individualized sensor data. The building automation application server may optimize the building system configuration for cost, efficiency, or user comfort based on the individualized sensor data. The mobile computing devices and the building automation application server may communicate via one or more collection servers. Other embodiments are described and claimed.
Abstract:
A fluid-cooled stator assembly for electrical machines. The stator assembly may include a stator core having a back iron portion and a plurality of stator teeth. Each of the plurality of stator teeth may be separated from each other by at least one of plurality of slots, the slots being structured to receive placement of stator windings. The apparatus also includes a thermal management conduit that is positioned at various locations about the stator assembly, including within or along the back iron portion, stator teeth, slots, and/or among the stator windings. Further, the thermal management conduit may provide insulation for one or more coils of the stator windings. Additionally, at least a portion of the thermal management conduit may be formed from a thermally conductive polymer. The thermal management conduit is configured to convey a thermal management fluid in a heat exchange relationship with the stator assembly.
Abstract:
A protection arrangement for inaccessibly located power distribution equipment includes a first enclosure with power equipment and sensors, a second enclosure adjacent the first enclosure and including a signal handling device, at least one sealed electrical conductor passage between the first and second enclosures, each comprising at least one penetrator through the walls of the first and second enclosures. The signal handling device in the second enclosure is connected to the sensors in the first enclosure via electrical conductors passing through said sealed electrical conductor passages and to an external protection device via a communication link. The signal handling device receives electrical sensor signals from the sensors and shapes them for submission to the external protection device.
Abstract:
A high voltage valve arrangement includes a high voltage valve unit; an external electric shield structure arranged at least partially around the high voltage modular valve unit and a grounding system. The grounding system includes a grounding system configured to be remotely extended from a retracted position to an extended position, whereby the extendable grounding device establishes electric connection with the external shield structure when it is extended from the retracted position.
Abstract:
An exemplary method for engineering a Distributed Control System (DCS) having at least one Input/Output device and at least one controller that are communicatively connected. A user is prompted to request an application type and select a variant from one or more variant options, at least one device is identified from a plurality of devices available in the DCS, selecting at least one function block including function fragments from a library based on the user input, instances of function fragments are created and at least one instance of function fragments is arranged based on the at least one identified device from the plurality of devices and configuring the at least one identified device based on the created instances of function fragments. The selected solution variant option is determined from the arranged function fragments and changes are made dynamically to satisfy one or more identified DCS conditions.
Abstract:
A microgrid connecting at least one distributed electricity generator includes a first switch configured for, in a closed position, connecting the microgrid to a first network line at a first point of common coupling (PCC) and for, in an open position, disconnecting the microgrid from the first network line at the first PCC; a second switch configured for, in a closed position, connecting the microgrid to a second network line at a second PCC, and for, in an open position, disconnecting the microgrid from the second network line at the second PCC; and a control unit configured for, when an islanding event has been detected when the second switch is in its closed position and the first switch is in its open position, acting to close the first switch, bringing it to its closed position.