Abstract:
A socket is provided for removing or installing a fastener having a hexagonally shaped portion. The socket includes a body having a longitudinal axis and opposing first and second ends. First surfaces define a tool-receiving portion at the first end. The tool-receiving portion is constructed and arranged to receive a portion of a tool. Second surfaces define a socket portion at the second end. The socket portion is constructed and arranged to receive and engage the portion of the fastener therein. Holding structure is associated with the socket portion and is constructed and arranged to non-magnetically hold the portion of the fastener in the socket portion so as to not fall out of the socket portion, either due to friction or vacuum, without providing torque to the fastener when the socket is rotated during installation or removal of the fastener.
Abstract:
Stripping structure strips insulation from ends of a plurality of leads of a lead bundle. Each lead includes a conductor member coated with the insulation. The structure includes a housing having wall structure defining a stripping chamber, an inlet in fluid communication with the stripping chamber, and an outlet in fluid communication with the stripping chamber. A cover has an opening for receiving an end of the lead bundle in a sealing manner so that the leads thereof are received in the stripping chamber. Chemical stripping solution is in communication with the inlet. When the lead bundle is received through the opening with the leads in the stripping chamber and when the chemical stripping solution is provided though inlet and in the stripping chamber, the chemical stripping solution strips the insulation from the conductor members, with the stripping solution along with stripped insulation exiting through the outlet.
Abstract:
A socket is provided for removing or installing a fastener having a hexagonally shaped portion. The socket includes a body having a longitudinal axis and opposing first and second ends. First surfaces define a tool-receiving portion at the first end. The tool-receiving portion is constructed and arranged to receive a portion of a tool. Second surfaces define a socket portion at the second end. The socket portion is constructed and arranged to receive and engage the portion of the fastener therein. Holding structure is associated with the socket portion and is constructed and arranged to non-magnetically hold the portion of the fastener in the socket portion so as to not fall out of the socket portion, either due to friction or vacuum, without providing torque to the fastener when the socket is rotated during installation or removal of the fastener.
Abstract:
Stripping structure strips insulation from ends of a plurality of leads of a lead bundle. Each lead includes a conductor member coated with the insulation. The structure includes a housing having wall structure defining a stripping chamber, an inlet in fluid communication with the stripping chamber, and an outlet in fluid communication with the stripping chamber. A cover has an opening for receiving an end of the lead bundle in a sealing manner so that the leads thereof are received in the stripping chamber. Chemical stripping solution is in communication with the inlet. When the lead bundle is received through the opening with the leads in the stripping chamber and when the chemical stripping solution is provided though inlet and in the stripping chamber, the chemical stripping solution strips the insulation from the conductor members, with the stripping solution along with stripped insulation exiting through the outlet.