Abstract:
There is provided a space heating system (100) that includes a heat pump (105), a supplemental gas heating system (110), and a controller (115) connected to the heating system (100). The controller (115) controls a switching set point, which in its simplest case is an ambient temperature at which the controller (115) switches between operation of the heat pump (105) and operation of the supplemental gas heating system (110). The controller (115) is connected to a real time source of information (195) providing at least one of current electricity prices and current prices of a source of heating such as gas, and changes the switching set point in response to changes in at least one of the electricity prices and the gas prices. There is also provided a method for control of the heating system (100).
Abstract:
A suction modulation valve is throttled when conditions in a refrigerant system indicate that an undesirable amount of liquid refrigerant might otherwise be delivered to the compressor. As an example, the throttling would occur at start-up, among other conditions. Throttling the suction modulation valve reduces the amount of refrigerant reaching the compressor and thus ensures that any liquid refrigerant would be likely “boiled off” before raising any problems in the compressor. Other control steps can also be performed to alleviate flooded compressor operation with liquid refrigerant. Such steps, for example, can consist of: actuating heaters, discharge valve throttling, by-passing refrigerant from intermediate compression point back to suction, controlling the speed of the condenser fan can be performed independently or in combination including the suction modulation valve throttling.
Abstract:
A refrigerant vapor compression system includes a first compression device and a second compression device disposed in a refrigerant circuit in series relationship with respect to refrigerant flow and an intercooler adapted to cool the refrigerant passing from the first compression device to the second compression. An evaporator is provided in the refrigerant circuit wherein the refrigerant accepts heat from a moisture bearing gas such as air. Condensate formed of moisture condensing out of the gas is collected and supplied to the intercooler for cooling the refrigerant flowing from the first compression device to the second compression device.
Abstract:
A heat pump is provided with a component that has a pulse width modulation control to adjust system capacity. Thus, by utilizing a pulse width modulation technique to control this component, the present invention is able to closely tailor the delivered capacity of the heat pump to that which is demanded, without cycling the unit. In one embodiment, the component has a suction pulse width modulation valve. In another embodiment, the component which is modulated is the compressor pump unit, and, in particular, a pair of scroll members that are allowed to move into and out of contact with each other. The pulse width modulation control device can also be utilized in combination with a heat pump having an economizer function and/or an un-loader function.
Abstract:
A refrigerant system is provided with a reheat circuit. A pulse width modulation control is provided to achieve variable reheat capacity and thus to satisfy a wide spectrum of temperature and humidity levels in an environment conditioned by a refrigerant system. The pulse width modulation signal provided for the reheat flow control device achieves incremental amounts of reheat while avoiding temperature and humidity variations in the conditioned space.
Abstract:
A compressor has an inlet, an outlet, and at least an intermediate first port therebetween. A condenser is coupled to the compressor to receive refrigerant. First and second evaporators are coupled to the condenser to receive refrigerant. Conduits define a return flowpath from the first evaporator to the compressor inlet and a second return flowpath from the second evaporator to the intermediate port. A bypass conduit extends between a first location between the first evaporator and the compressor inlet and a second location between the second evaporator and the first port.
Abstract:
In a method of operating a scroll or screw compressor at startup, the compressor is rotated in reverse for a brief period of time. The compressor is of a type that does not compress liquid when rotated in reverse. The purpose is to boil off the liquid refrigerant from the oil by heating and agitating the mixture of oil and refrigerant in the oil sump. This results in much more benign forward start as no refrigerant is drawn into the scroll compressor pump and the amount of oil pumped out of the compressor on start up is minimized. Also, the viscosity of oil is increased and lubrication of the bearings is improved. After a short period of time reverse rotation is stopped and the compressor can begin to be driven in the forward direction.
Abstract:
A heat pump system operates in heating and cooling modes. The heat pump is provided with both a reheat function and economizer circuit. The economizer circuit provides augmented performance to the heat pump, while the reheat coil allows enhanced control over temperature and humidity of the air supplied to the conditioned space. A bypass line around an outdoor heat exchanger is also provided to achieve additional flexibility of control for a sensible heat ratio. Selective operation of the abovementioned components and subsystems allows precise control over system operation parameters and hence satisfaction of a wide spectrum of sensible and latent load demands and improved reliability.
Abstract:
A fixed restriction is placed in a suction line leading to a compressor. The size of the restriction is selected to achieve a desired capacity reduction (correction) for the refrigerant system compressor. By selectively restricting the flow of refrigerant through the suction line, the capacity delivered by the compressor will be reduced. This allows a designer of a refrigerant system to utilize an available compressor of a specific size (displacement) to satisfy the desired system operating conditions and performance characteristics as well as application requirements. In embodiments, the refrigerant system may be provided with an economizer and unloader functions. The restriction may be placed in the compressor suction port, or in the suction line leading to the compressor. Further, a pair of parallel flow passages may communicate an evaporator to the compressor, with the restriction being placed in one and a solenoid valve placed in the other.
Abstract:
A scroll compressor is provided with a recess to increase the flow area through which compression chambers communicate with a discharge port. The scroll compressor is of the sort having a wrap with a swing radius that is always equal to or greater than zero. That is, this invention does not apply to the type of scroll compressor wherein a swing radius will cross zero as the wrap is generated. Stated another way, a forward ledge of the scroll compressor can be defined spaced towards a tip of the scroll wrap relative to a rear ledge. The present invention provides a recess in the type of scroll wrap wherein the forward ledge has a thickness that is at least equal to or greater than the thickness of the scroll wrap at the rear ledge. A supplemental recess may be provided in the non-orbiting scroll wrap. The recess in the orbiting scroll may be stepped to have different height portions.