Abstract:
A push-to-talk (PTT) mobile station having a PTT ready mode, the mobile station having a controller adapted for executing computer program code; a memory connected to the controller for storing computer program code; computer program code stored in the memory and executable by the controller for operating the mobile station in the PTT ready mode selected from a plurality of PTT ready mode techniques, for establishing a PTT session; and a radio subsystem connected to the controller and the memory, the subsystem being configured for enabling the PTT mobile station to operate in the PTT ready mode for establishing one of the PTT session, PTT traffic, or both the PTT session and PTT traffic.
Abstract:
Methods, searchers, base stations are provided which search for known codes contained in signals received over wireless channels, from mobile units for example. A coherent correlation is performed between an expected known code, and portions of the received signal during periods which are separated in time. Advantageously, by making the correlation periods separated in time, time diversity is realized such that if one or more of the correlation periods exist while the signal is of poorer quality, for example due to a fade, the remaining correlation periods may still yield a meaningful search statistic. Searching is done during time slots defined with reference to system time, not mobile unit time. Advantageously, this makes the searcher design simpler and more efficient. By performing time diversity searching in this manner, search tasks for one mobile unit(s) can be performed between the search task periods for another mobile unit resulting in a more efficient utilization of searcher resources.
Abstract:
A communications subsystem for a wireless device for correcting errors in a reference frequency signal. The communications subsystem comprises a frequency generator for generating the reference frequency signal and a closed loop reference frequency correction module that generates a reference frequency adjustment signal for correcting the reference frequency signal when the communications subsystem operates in closed loop mode. The subsystem further includes an open loop frequency correction means that that samples values of the reference frequency adjustment signal during the closed loop mode and generates a frequency correction signal for correcting the reference frequency signal when the communications subsystem operates in a mode other than closed loop mode.
Abstract:
One illustrative method of reducing signal interference in a wireless receiver includes receiving a radio frequency (RF) signal; amplifying the received RF signal with a gain G; producing a baseband signal from the amplified RF signal; producing a signal-to-interference (S/I) ratio from the baseband signal; and adjusting the gain G based on the S/I ratio. Preferably, the gain G is varied over a time period to produce a plurality of S/I ratios, so that the gain G corresponding a maximum S/I ratio produced over the time period can be selected for optimal performance. With this technique, higher accuracy is provided as intermodulation distortion is accounted for in the S/I ratio. Advantageously, the S/I ratio calculations and the gain adjustments are performed digitally by one or more processors such as a digital signal processor (DSP).
Abstract:
Methods and apparatus for expeditiously releasing network resources for a mobile station based on low battery and lost signal conditions are disclosed. The wireless network (104) receives a power down warning message from the mobile station (102) indicative of a low battery condition. The wireless network (104) then identifies whether a lost signal condition exists with the mobile station (102). In response to receiving the power down warning message and subsequently identifying the lost signal condition, the wireless network (104) causes network resources for the mobile station to be released. The wireless network (104) infers that the mobile station (102) has powered down due to low battery without enough time to send a power down registration to the wireless network (104).
Abstract:
The present invention relates to a method for effecting regulation of the effective noise figure of a CDMA (Code Division Multiple Access) receiver. The regulation process can be used to control the receiver during the activation/deactivation of a cell/sector in a CDMA wireless system and during normal operation when the service area of the cell/sector needs to enlarge or shrink. In a most preferred embodiment the CDMA receiver includes a source of pseudo-random noise that is injected in the received signal, downstream of the signal digitization stage. A power detector measures the power in the received digitized signal and a program logic determines the amount of noise figure degradation to be applied. The actual noise power regulation is effected by multiplying the output of the noise generator by a weighing factor. In a multi-channel CDMA system, each channel is provided with an independent system to regulate the effective noise power figure degradation, thus allowing to effect a noise figure regulation on a channel by channel basis.