Abstract:
Systems, methods, and devices of the various embodiments enable rate shaping of content data delivered to a client application. A processor may determine an ingress rate of content data to a buffer. The processor may determine an amount of the content data stored in the buffer. The processor may determine an egress rate of the content data from the buffer to the client application based on the ingress rate and the amount of content data stored in the buffer. The processor may send the content data from the buffer to the client application at the egress rate.
Abstract:
Techniques for prioritizing user equipments (UEs) for switching between wireless systems are disclosed. The wireless systems may be part of a small cell and may include a WLAN system and a cellular system. In one design, a network entity (e.g., the small cell) may identify a plurality of UEs communicating with a first wireless system. The first wireless system may be one of a plurality of wireless systems providing communication coverage for the UEs. The network entity may determine priorities of the UEs for switching from the first wireless system to a second wireless system. The network entity may then select at least one UE among the plurality of UEs to switch from the first wireless system to the second wireless system based on the priorities of the UEs.
Abstract:
Methods, systems, and devices are described for managing network communication between a UE and network equipment. The communication between the UE and the network equipment may be established over a first radio access technology (RAT) and a second RAT, and a coupling between the first RAT and the second RAT may be identified in the communication between the UE and the network equipment. At least one of a reselection procedure or a handover procedure for at least one of the RATs may be adapted based on the identified coupling between the first RAT and the second RAT.
Abstract:
Methods, systems, and devices are described for generating keep-alive messages for a plurality of persistent connections. The plurality of persistent connections associated with at least one application on a wireless device in a network hosting the plurality of persistent connections are identified. A timing schedule specific to the network to transmit keep-alive messages to refresh each persistent connection of the plurality of persistent connections is identified. A generation of the keep-alive messages for each persistent connection of the plurality of persistent connections is synchronized. The synchronized generation of the keep-alive messages occurs according to the identified timing schedule of the network.
Abstract:
Methods, systems, and devices are described for network directed system selection. A wireless device may identify a trigger associated with system selection by a network device for the wireless device. The wireless device may identify system selection data for use by the network device in performing a network directed system selection decision for the wireless device. The system selection data may include an indication of one or more networks through which the wireless device has verified that data access is available to the wireless device. The system selection data may be transmitted from the wireless device to a first network for use by the network device. The system selection data may be transmitted in response to the identified trigger.
Abstract:
Techniques for admitting user equipments (UEs) to wireless systems are disclosed. UEs may be assigned priorities for admission to a given wireless system. The UEs may then be admitted to the wireless system based on the priorities of the UEs for the wireless system. In one design, a UE may be identified for admission to a first wireless system among a plurality of wireless systems. Attributes (e.g., capabilities) of the UE for the plurality of wireless systems may be determined. An admission priority of the UE for the first wireless system may be determined based on the attributes of the UE for the plurality of wireless systems. Whether to admit the UE to the first wireless system may be determined based on the admission priority of the UE for the first wireless system and possibly the current resource usage of the first wireless system.