Abstract:
Systems and methods for data transport are provided which encode streams of data using low density parity check (LDPC) encoders and map data streams to symbols, by assigning bits of symbols to a signal constellation and associating bits with constellation points. Constellation points are generated using a D-dimensional optimum signal constellation design (OSCD) method. The OSCD determines an optimum source distribution for an optical channel, generates D-dimensional training sequences from the optimum source distribution, determines new signal constellation points as the center of mass for each D-dimensional cluster of points, and repeats these steps until convergence or until a predetermined number of iterations is reached. Coordinates obtained by the D-dimensional OSCD method are stored in a look-up-table (LUT), points are selected from the LUT using encoded data streams, coordinates are input into a D-dimensional modulator after digital-to-analog conversion (DAC), and a modulated signal is transmitted over an optical medium.
Abstract:
A training symbol with two identical halves as well as a pilot-tone at a center frequency is used for both timing synchronization and carrier frequency offset estimation. A timing synchronization is achieved by finding a peak of a cross-correlation function of the two halves in the first symbol. A fraction part of the frequency offset FO is then calculated from a phase difference between the two halves of the first training symbol. Then, the received signal is compensated for the fraction part of FO, and, an integer part of the FO is obtained by counting the shifted positions of the pilot-tone peak in the frequency domain.
Abstract:
Hybrid application of the generic evolution and simulated annealing methods are used to solve routing, wavelength assignment, and spectrum allocation sub-problems of a light-tree establishment problem in a flexible wavelength division multiplexing FWDM optical network.
Abstract:
Methods and systems for optical communication in a submarine network are provided. An input signal is received from a terminal at a reconfigurable branching unit (BU), and the input signal is split into at least two parts, with one part being associated with one or more trunk terminals and another part being associated with one or more branch terminals. Each of one or more spectrum channels are selected and individually switched to one of a plurality of paths using at least one wavelength selective switch (WSS), with the at least one WSS being configured to transmit the one or more spectrum channels to their respective target output port and to combine signals switched to a specific port into a wavelength division multiplexing (WDM) signal. Individual spectrum channels are filtered out using at least one wavelength blocker (WB).