Abstract:
An ink-jet printer comprises: a recording head to eject ink through a nozzle; a conveying element located so as to face the recording head and conveying a recording medium onto which an image is recorded employing the recording head; and a recording medium expansion and contraction-preventing means provided at a contacting portion where the conveying element contacts the recording medium.
Abstract:
A method for increasing the diameter of an ink jet ink dot resulting from the application of an ink jet ink drop applied to the surface of an inkjet recording medium having a support having thereon an image-receiving layer and an overcoat layer, the ink penetration rate of the overcoat layer being faster than the ink penetration rate of the image-receiving layer; having the steps of: a) applying the overcoat layer on top of the image-receiving layer at a thickness less than the maximum thickness, the maximum thickness being that thickness whereby an ink jet ink drop applied to the surface of the overcoat layer will not substantially penetrate the surface of the image-receiving layer; and b) applying the ink jet ink drop on the surface of the overcoat layer whereby the diameter of the ink jet ink dot is increased relative to that which would have been obtained if the overcoat layer had been coated at a thickness of at least the maximum thickness.
Abstract:
An ink jet recording medium for pigment ink, which includes a substrate and a porous ink receiving layer for pigment ink, formed on the surface of the substrate, wherein the ink receiving layer includes a pigment and a binder and has an average surface roughness (Ra) according to JIS B0601 of from 0.2 to 2.0 &mgr;m.
Abstract:
A process for making an article with an image protected by a clear fluoropolymer film includes coating the inner surface of the fluoropolymer film with a layer of hydrophobic, ink receptive polymer composition compatible with the fluoropolymer film. An image is printed on the layer of hydrophobic, ink receptive polymer composition using an inkjet printhead supplied with a non-aqueous solvent based ink. The clear, printed fluoropolymer film is then adhered to a substrate with the inner surface facing the substrate whereby the image is viewable through and protected by the fluoropolymer film.
Abstract:
An ink jet printing method having the steps of: A) providing an ink jet printer that is responsive to digital data signals; B) loading the printer with an ink jet recording element having a support having thereon the following layers in order: i) a base layer of a polymeric binder, a polymeric mordant and a stabilizer having the following formula: and ii) an overcoat layer of a trisaryl-1,3,5-triazine ultraviolet light absorbing material; C) loading the printer with an ink jet ink composition of water, a humectant, and a water-soluble dye; and D) printing on the overcoat layer using the ink jet ink in response to the digital data signals.
Abstract:
A sensor includes an ink drop sensing element integral to a printed circuit board. Sensing circuitry is coupled to the printed circuit board and may be configured to receive electrical signals from the sensing element. A method of manufacturing such an ink drop sensor and a printing mechanism having such an ink drop sensor are also provided.
Abstract:
A customized font based on fixed font cells having certain non-printable pixels along its perimeter, and formed by a pixel grid having a higher dpi horizontal resolution as compared to its vertical resolution. By preventing any marking dots on adjacent pixels in a given row, a minimal amount of ink drops can be used to print digitized characters, and higher throughput is obtained by using a printhead having a nozzle pitch which is the same as the vertical print resolution, and which has a swath width which allows a complete row of character cells to be printed in a single pass of the printhead across the media.
Abstract:
In combination with an inkjet printer having a glossy topcoat deposition feature, a method for printing security marks on an inkjet-printed sheet which includes the step of modulating the deposition of the topcoat layer, rather applying it uniformly to the imaged surface of the sheet. Modulated deposition results in variations in gloss which are visible when the document is viewed at an angle. Three alternatives for modulation are possible: the topcoat layer may be applied to the entire sheet, but with the amount thereof deposited per unit area over the surface of the document alternating between a low value and a high value; the topcoat layer may be applied to the entire sheet, but with the amount thereof deposited per unit area varying over the surface of the document as a continuous function between a low value and a high value; or the topcoat layer may be applied to only portions of the document surface. Modulated application of the topcoat can be controlled using one of several available techniques; the standard print driver can be employed in a manner similar to that used for the printing of standard images with pigmented inks; the printer may be designed to accept a custom plug-in module procurable from a secure source (e.g., the printer manufacturer) which, when enabled by the standard print driver, controls the printing of a particular security mark design; or an internet-based vendor may provide a secure downloadable security mark design in much the same manner that printable postage stamps are provided through various vendors in conjunction with the U.S. Postal Service's Information Based Indicia Program.
Abstract:
An ink jet image recording method including: forming an image by ejecting an ink jet recording ink composition including one of a water-soluble dye and an oil-soluble dye onto an image-receiving material; and applying a solution including a dispersion of fine polymer particles to the image-receiving material simultaneously with or after the forming of an image or an ink jet image recording method including: applying a solution including a dispersion of fine polymer particles to an image-receiving material; and ejecting an ink jet recording ink composition including one of a water-soluble dye and an oil-soluble dye onto the image-receiving material for formation of an image, while the dispersion of fine polymer particles on the image-receiving material maintains a condition in which the ink jet recording ink composition is able to pass therethrough.
Abstract:
A liquid composition for cleaning and removing koga on a heater formed after long-term use of an ink-jet recording head, or contaminants introduced during manufacture of the ink-jet recording head is provided. The liquid composition includes an effective amount of a cleaner to clean an ink-jet recording head, and the cleaner is at least one selected from an organic acid, a salt of organic acid, an organic acid ester, and a salt of organic acid ester.