摘要:
A sensor configuration for use in detecting ink droplets ejected from an ink drop generator is provided. The sensor configuration includes a sensing element configured to receive a biasing voltage which creates an electric field from the sensing element to the ink drop generator. The sensor configuration also includes a sensing amplifier coupled to the sensing element, whereby the sensing element in imparted with an electrical stimulus when at least one ink droplet is ejected in the presence of the electric field, and thereafter passes in close proximity to the sensing element without substantially contacting the sensing element. Sensor configurations with a separate electrically biasing element which may or may not contact the ink droplets are also provided. Additionally, a printing mechanism having such sensor configurations and a method of making ink drop detection measurements are also provided.
摘要:
Determining inkjet printer pen turn-on voltages is disclosed. An inkjet printer has a number of pens, and a number of sets of nozzles in each pen. Each set of nozzles of a pen is fired at each of a number of voltages, to obtain a voltage-value curve for each set of nozzles. A nozzle turn-on voltage for each set of nozzles is determined based on a maximum slope of its voltage-value curve. The turn-on voltage for each pen is determined based on the nozzle turn-on voltages of the voltage-value curves for its sets of nozzles.
摘要:
An ink cartridge of a printer includes first and second electrodes on opposite sides of an ink reservoir. Level of ink in the reservoir may be measured by applying a sense signal to the first electrode, detecting a signal at the second electrode, extracting DC content of the detected signal, and using the DC content to determine the ink level.
摘要:
A printer according to the present techniques includes a print head having at least one nozzle for ejecting an ink drop and a sensing element for detecting the ink drop. The print head includes a charge shield for imparting an electrical charge into the ink drop during ejection from the nozzle and for shielding electrical noise generated in the print head.
摘要:
A method of producing and using photo media to print a glossy, photo-quality image. The image is printed onto the back of a coated transparent base. Thereafter, an opaque backing is applied to cover the printed image. The resulting print is viewed from the front, which provides the photo-quality, attractive appearance primarily because of the substantial gloss depth and uniformity attributable to the transparent base. The transparent base and backing protect the ink-receiving coating and make the resulting print very durable. The image is light fast because the ink is sandwiched between the transparent base and the backing, thereby sealing the ink from oxygen. In a preferred embodiment of the present invention, the backing is applied as a liquid using substantially the same mechanism as used for printing the image.
摘要:
A sensor configuration for use in detecting ink droplets ejected from an ink drop generator is provided. The sensor configuration includes a sensing element configured to receive a biasing voltage which creates an electric field from the sensing element to the ink drop generator. The sensor configuration also includes a sensing amplifier coupled to the sensing element, whereby the sensing element in imparted with an electrical stimulus when at least one ink droplet is ejected in the presence of the electric field, and thereafter passes in close proximity to the sensing element without substantially contacting the sensing element. Sensor configurations with a separate electrically biasing element which may or may not contact the ink droplets are also provided. Additionally, a printing mechanism having such sensor configurations and a method of making ink drop detection measurements are also provided.
摘要:
An ink drop detector includes a sensing target which is imparted with an electrical stimulus when struck by at least one ink drop burst which has been ejected from an ink drop generator. The detector also includes electronics coupled to the sensing target which characterize the electrical stimulus in terms of a mathematical phase. Methods for analyzing ink ejected from an ink drop generator, and a method for optimizing ink drop generator firing frequency are also provided.
摘要:
A waste ink removal system cleans ink residue from an electrostatic sensing element of an ink drop detector in a printing mechanism when a scraper, supported by a base, is actuated between a retracted position and an engaged position. The system also includes a debris receptacle and/or an absorber which the scraper contacts, after scraping ink from the sensing element, to remove the ink from the scraper surface. A method of cleaning ink residue from an electrostatic sensing element of an ink drop detector, and a printing mechanism having such a waste ink removal system are also provided.
摘要:
A monitoring system monitors a pressure wave developed in the surrounding ambient environment during inkjet droplet formation. The monitoring system uses either acoustic, ultrasonic, or other pressure wave monitoring mechanisms, such as a laser vibrometer, an ultrasonic transducer, or an accelerometer sensor, for instance, a microphone to detect droplet formation. One sensor is incorporated in the printhead itself, while others may be located externally. The monitoring system generates information used to determine current levels of printhead performance, to which the printer may respond by adjusting print modes, servicing the printhead, adjusting droplet formation, or by providing an early warning before an inkjet cartridge is completely empty. During printhead manufacturing, an array of such sensors may be used in quality assurance to determine printhead performance. An inkjet printing mechanism is also equipped for using this monitoring system, and a monitoring method is also provided.
摘要:
Ink-jet pen drop firing elements having extended use—namely, printheads used with a plurality of replaceable reservoirs—are provided with a more accurate life span and performance gauge by monitoring energy accumulations over time and using monitored data for certain printer activity or maintenance.