Abstract:
A video-on-demand system includes a resource manager (501) in communication with a central storage server (502), a back office system (503), and a plurality of edge servers (504). The resource manager can receive (523) a video-on-demand session request 524) requesting delivery of content (529), read (525) a content allocation register (520) that includes a popular asset list (301) with a plurality of content assets ranked (314) by highest demand (314) within a predetermined past usage window (316) and an edge server list (302) indicating which edge servers have delivered each content asset of the popular asset list. The resource manger can then Select (526) a selected edge server (527) from the content allocation register as a function of the popular asset list and the edge server list and cause (528) the selected edge server to deliver (529) the content in response to the video-on-demand session request.
Abstract:
Embodiments of the present invention provide methods, systems, and apparatuses for a fault resilient collaborative media serving array comprising a plurality of nodes. In one embodiment, the present invention provides a method for creating a fault resilient collaborative media serving array where the array nodes do not share memory, the serving of a content file is accomplished by the collaborative efforts of many nodes in the array, and where there is no fixed allocation of sessions to nodes.
Abstract:
At least a first image, such as a motion video image, is prepared for integration with at least a second image, such as a motion video image and/or a still image. To prepare the first image for integration, a first compressed image is formed, restricted to a first region of a first image area by representing at least one segment of a first image within the first region with a reference to another segment of the first image within the first region. The second image may also be prepared for integration by forming a second compressed image. The second compressed image may be restricted to a second region of a second image area by representing at least one segment of the second image within the second region with a reference to another segment of the second image within the second region.