摘要:
A system and method are provided for establishing a network communication session using fast authentication. In a network system a client or user device may establish a communication session with a server using full authentication. If the session is interrupted or discontinued and resumption of the session is requested, a session identifier of the previously established session may be compared to the session identifier of the requested session. If a match is detected, the session may be resumed using a fast authentication (or re-authentication) procedure such that the session is resumed more efficiently and expediently. Fast authentication may be performed, for example, even when the first session and the resumed second session are of different authentication layers, different types of network interfaces and/or different locations. Thus, a session, such as a TLS session, may resume functionality among multiple defined authentication protocols or technologies such as 802.1X, PANA or cellular based systems.
摘要:
In some embodiments, a method is disclosed involving a mobile device discovery and use of target wireless networks which are at least partly within a coverage area of another wireless network which provides location information which includes: acquiring data from a plurality of said target wireless networks; acquiring location information from said another wireless network; mapping said data from said plurality of said target wireless networks with said location information; and selecting one of said plurality of target wireless networks based on said mapped data.
摘要:
A system and method that uses wireless-capable desktop computers in a vicinity such as to enable one to securely determine the location of an untrusted user with office level granularity.
摘要:
A system and method for performing MIH pre-authentication, which includes providing support for both direct and/or indirect pre-authentication and providing support for both network-initiated and mobile-initiated pre-authentication.
摘要:
Traffic flows of data packets from respective packet queues in wireless stations to a shared transmission medium of a wireless network are scheduled in accordance with Hybrid Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). HCCA is applied by eliminating from consideration for HCCA access flows for which the sum of a desired minimum age of an oldest data packet in the respective packet queue and the time of creation of the oldest data packet is greater than the present time. For flows that are not eliminated from consideration, HCCA access is granted to the flow having a smallest sum of the desired maximum age of the oldest data packet and the time of creation of the oldest data packet. When all traffic flows are eliminated from consideration for HCCA access, EDCA is applied so that traffic flows compete for access to the medium.
摘要:
This document describes an EAP method used for extending EAP functionality. The extended functionality includes channel binding and re-authentication. The EAP method also allows sequencing of multiple EAP methods inside it.
摘要:
The preferred embodiments relate to, among other things, systems and methods for a media-independent-handover (MIH) Protocol State Machine. The present application provides, among other things, a MIH protocol state machine system and method for both source and receiver nodes. A system and/or method is described for facilitating media independent handover of a mobile node within or between network infrastructure, comprising: a media independent handover protocol state machine configured to provide states of a source node or a destination node during a transaction, said state machine addressing requests or responses both with and without an AckReq.
摘要:
In the public WLAN systems, reliable user re-authentication for mobility support is an essential step. However, re-authentication during handoff procedures causes long handoff latency which deteriorates the quality of service specifically for real-time multimedia applications. One possible solution is to authenticate the Mobile Node (MN) in advance with all the neighboring Access Points (APs) and distribute the Session Keys to them. However, the key issue is how to optimally and efficiently select the neighboring APs. In the preferred embodiments, we propose a system that takes into account the user current “Geo-Location”, “Mobility Pattern” and “Application Running on MN”; estimates the “Expected Mobility Zone” (EMZ) and selects an appropriate set of candidate APs corresponding to the MN's geo-location. The EMZ may comprise of APs belonging to “Intra-domain”, “Inter-domain” or “Inter-technology Networks” (e.g., WLAN, WiMAX, and Cellular etc). The system assumes that not only the Mobile Nodes but also the Fixed Nodes (APs or Base Stations) are capable of knowing their Geo-Location Coordinates X, Y, Z. This capability may come either by integrating GPS receiver or through any other alternate, state of the art or future positioning technologies in the APs.
摘要:
In some illustrative embodiments, a novel system and method is provided that can, for example, extend concepts of pre-authentication (such as, e.g., IEEE 802.11i pre-authentication) so as to operate across networks or subnetworks (such as, e.g., IP subnets). In preferred embodiments, a novel architecture includes one or both of two new mechanisms that substantially improve, e.g., higher-layer handoff performance. A first mechanism is referred to as “pre-configuration,” which allows a mobile to pre-configure higher-layer information effective in candidate IP subnets to handoff. A second mechanism is referred to as “virtual soft-handoff,” which allows a mobile to send or receive packets through the candidate IP subnets even before it is actually perform a handoff to any of the candidate IP subnets.
摘要:
Traffic flows of data packets from respective packet queues in wireless stations to a shared transmission medium of a wireless network are scheduled in accordance with Hybrid Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). HCCA is applied by eliminating from consideration for HCCA access flows for which the sum of a desired minimum age of an oldest data packet in the respective packet queue and the time of creation of the oldest data packet is greater than the present time. For flows that are not eliminated from consideration, HCCA access is granted to the flow having a smallest sum of the desired maximum age of the oldest data packet and the time of creation of the oldest data packet. When all traffic flows are eliminated from consideration for HCCA access, EDCA is applied so that traffic flows compete for access to the medium.