Abstract:
In a peristaltic medical infusion pump unit, comprising a peristaltic assembly and a counter surface or anvil facing said peristaltic assembly and provided by the inner surface of a door pivotally mounted on a housing of the unit, the door is readily non-destructively removable and replaceable. In use of the peristaltic pump unit, a flexible resilient tube forming part of a medical fluid delivery line is extended between the peristaltic assembly and the counter surface or anvil provided by the door. The medical fluid delivery line has first and second color coded fittings spaced therealong upstream and downstream of the peristaltic assembly and the region of the housing of the pump unit across which the infusion line is extended is provided, correspondingly spaced above and below the peristaltic assembly with correspondingly color coded support means for these fittings.
Abstract:
A method of correcting for magnetic field inhomogeneity caused by various factors, such as implanted metal and air/tissue interfaces, in magnetic resonance imaging (MRI) is provided. Geometric distortion due to inhomogeneity in a static magnetic field B.sub.0 is corrected for by addition of a compensation gradient. The compensation gradient is applied in the slice selection direction Z, has a timing substantially identical to the standard frequency encoding gradient G.sub.x, and has an amplitude identical to the slice selection gradient G.sub.z that is applied during the initial RF excitation. Inhomogeneity in an RF field B.sub.1 is compensated for by utilizing an RF coil that is large enough in size as compared with a metal implant to make the volumetric percentage of the metal in the coil insignificant. Inhomogeneity in a gradient field G=(G.sub.x, G.sub.y, G.sub.z) is corrected for by a treatment of the most significant error factor G.sub.z that causes slice thickness error. Specifically, the method acquires two images with complementary slice thickness error by using two pulse sequences with flipped slice selection gradients G.sub.z ; combination of the two images successfully cancels the effect of the slice thickness error. Local dephasive MRI signal loss due to magnetic field inhomogeneity is corrected for by acquisition of two images with positive and negative offset G.sub.z gradient lobes, respectively. The pair of images are combined to cancel the effect of local signal loss error.