Abstract:
A multicast optical switch includes a free-space optical assembly of discrete splitters, cylindrical optics, and a linear array of reflective switching devices, such as microelectromechanical systems (MEMS) mirrors, to provide low-loss, high-performance multicast switching in a compact configuration. The assembly of optical splitters may include multiple planar lightwave circuit splitters or a multi-reflection beam splitter that includes a linear array of partially reflecting mirrors, each of a different reflectivity.
Abstract:
Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
Abstract:
The present invention generally relates to the operation of optical network equipment such as optical amplifiers. In one aspect, a method of operating an optical amplifier is provided such that output of the optical amplifier avoids the effects of operating an optical gain medium in a non-linear (kink) region of an L-I curve. The method generally includes operating an optical gain medium in a fully off state or fully on state above the kink region with a PWM signal. In another aspect, the effects of the kink region may be compensated for by utilizing a lookup table. A sample of the optical power of an amplified optical signal may be used to select an entry in the lookup table that compensates for non-linearities in the kink region. In yet a further aspect, a lookup table may be used to control a pulse modulator to compensate for non-linearites in the kink region of the L-I curve.
Abstract:
The present invention generally relates to the operation of optical network equipment such as optical amplifiers. In one aspect, a method of operating an optical amplifier is provided such that output of the optical amplifier avoids the effects of operating an optical gain medium in a non-linear (kink) region of an L-I curve. The method generally includes operating an optical gain medium in a fully off state or fully on state above the kink region with a PWM signal. In another aspect, the effects of the kink region may be compensated for by utilizing a lookup table. A sample of the optical power of an amplified optical signal may be used to select an entry in the lookup table that compensates for non-linearities in the kink region. In yet a further aspect, a lookup table may be used to control a pulse modulator to compensate for non-linearites in the kink region of the L-I curve.
Abstract:
A method of decoding a signal in an optical fiber. In one embodiment the method includes receiving the optical signal, wherein the optical signal is a pulse amplitude modulated signal. Converting the optical signal to an electrical signal. Comparing the electrical signal with a plurality of levels. Producing comparison output signals based on the comparison of the electrical signal with the plurality of levels. Processing the comparison output signals on a clock to produce processed output signals and latching the processed output signals on a clock signal to generate the plurality of serial, digital data streams.
Abstract:
A subscriber control system designed to be placed outside of the subscriber's home, for controlling access to cable television signals provided by a cable television headend. The system is modular in design containing a single control module and a single RF distribution module both shared by a number of jammer modules. The jammer modules contain a plurality of frequency agile oscillators, the frequencies of which can be changed in time-multiplex fashion. The outputs of the jammer modules can be shared amongst a number of subscribers using space division switching. The system features switching utilizing a plurality of series connected diodes to form a transmission line switch and also utilizes filters having inductive elements which are configured by etching processes
Abstract:
A device is disclosed for controlling access to cable television signals. Jamming oscillators are shifted in frequency, jamming multiple services each. The oscillators are shared between multiple subscriber ports, providing a cost effective, high security control system. A modular approach allows security to be added as additional capacity is required.