Abstract:
An optical package is provided comprising a laser diode and a wavelength conversion device. The laser diode and the wavelength conversion device define an external laser cavity and the wavelength conversion device is tilted relative to the output face of the laser diode to define a tilt angle φ that is less than approximately 85°. The input face of the wavelength conversion device comprises a pair of tapered facets and a microlens. The pair of tapered facets and the microlens are defined on the input face such that they share respective portions of the facial waveguide region on the input face, with the tapered facets occupying peripheral portions of the facial waveguide region on the input face and the microlens occupying an interior portion of the facial waveguide region on the input face. Each of the pair of tapered facets define a facet angle α within the facial waveguide region that is less than the facet angle α and is greater than approximately 45°. Additional embodiments are disclosed and claimed.
Abstract:
The present invention generally relates to the operation of optical network equipment such as optical amplifiers. In one aspect, a method of operating an optical amplifier is provided such that output of the optical amplifier avoids the effects of operating an optical gain medium in a non-linear (kink) region of an L-I curve. The method generally includes operating an optical gain medium in a fully off state or fully on state above the kink region with a PWM signal. In another aspect, the effects of the kink region may be compensated for by utilizing a lookup table. A sample of the optical power of an amplified optical signal may be used to select an entry in the lookup table that compensates for non-linearities in the kink region. In yet a further aspect, a lookup table may be used to control a pulse modulator to compensate for non-linearites in the kink region of the L-I curve.
Abstract:
An external cavity laser source is provided comprising an external laser cavity, a tunable distributed Bragg reflector (DBR), a DBR tuning element, an output reflector, a semiconductor optical amplifier (SOA), a frequency-selective optical coupler/reflector, and a wavelength conversion device. The tunable DBR, the DBR tuning element, the SOA, and the output reflector are configured to generate a fundamental laser signal characterized by a fundamental bandwidth that is narrower than the QPM bandwidth of the wavelength conversion device and can be tuned to a fundamental center wavelength within the QPM bandwidth. The frequency-selective optical coupler/reflector is configured for substantially non-reflective two-way transmission of optical signals at the fundamental center wavelength and is further configured for substantially complete reflection of wavelength-converted optical signals generated by the wavelength conversion device. The output reflector is configured for substantially non-reflective transmission of wavelength-converted optical signals generated by the wavelength conversion device and for substantially complete reflection of optical signals at the fundamental center wavelength. Additional embodiments are disclosed and claimed.
Abstract:
The present invention generally relates to the operation of optical network equipment such as optical amplifiers. In one aspect, a method of operating an optical amplifier is provided such that output of the optical amplifier avoids the effects of operating an optical gain medium in a non-linear (kink) region of an L-I curve. The method generally includes operating an optical gain medium in a fully off state or fully on state above the kink region with a PWM signal. In another aspect, the effects of the kink region may be compensated for by utilizing a lookup table. A sample of the optical power of an amplified optical signal may be used to select an entry in the lookup table that compensates for non-linearities in the kink region. In yet a further aspect, a lookup table may be used to control a pulse modulator to compensate for non-linearites in the kink region of the L-I curve.
Abstract:
The present invention relates generally to semiconductor lasers and laser projection systems. According to one embodiment of the present invention, a projected laser image is generated utilizing an output beam of the semiconductor laser. A gain current control signal is generated by a laser feedback loop to control the gain section of the semiconductor laser. Wavelength fluctuations of the semiconductor laser are narrowed by incorporating a wavelength recovery operation in a drive current of the semiconductor laser and by initiating the wavelength recovery operations as a function of the gain current control signal or an optical intensity error signal. Additional embodiments are disclosed and claimed.
Abstract:
An apparatus and method for measuring the spectral dependence of the Raman gain coefficient in optical fibers is presented. This approach measures the power level of Raman scattering in both a walk-off limited region and a physical fiber length limited region and, from these measurements, extracts the spectral dependence of the Raman gain coefficient. Access to these two regions is accomplished through control of the excitation pulse temporal width and relies on fiber dispersion to separate the excitation light from the Raman scattered light for short pulse widths. This approach measures the spectral dependence of the Raman gain without the necessity of absolute power measurement of the Raman scattered light, the need for a reference standard, or the need of a frequency tunable secondary optical source.
Abstract:
Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
Abstract:
Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
Abstract:
A multi-core optical fiber (100) comprises a plurality of optical cores (1, . . . , 8) to respectively transmit light and a plurality of cleaves (110a, 100b, 110c, 110d, 110e, 110f, 110g, 110h) extending from a surface (102) of the multi-core optical fiber (100) into the multi-core optical fiber. A first cleave (110a) comprises a surface (111a) to couple light out of the optical fiber, wherein a first optical core (1) ends at the surface (111a) of the first cleave (110a). An at least one second cleave (110b, . . . , 110h) comprises a surface (111b, . . . , 111h) to couple light out of the optical fiber, wherein at least one second optical core (2, . . . , 8) ends at the surface (111b, . . . , 111h) of the at least one second cleave (110b, . . . , 110h). The first and the at least one second cleave (110a, . . . , 110h) are staggered along the longitudinal axis (101) of the multi-core optical fiber (100).
Abstract:
A multi-core optical fiber (100) comprises a plurality of optical cores (1, . . . , 8) to respectively transmit light and a plurality of cleaves (110a, 100b, 110c, 110d, 110e, 110f, 110g, 110h) extending from a surface (102) of the multi-core optical fiber (100) into the multi-core optical fiber. A first cleave (110a) comprises a surface (111a) to couple light out of the optical fiber, wherein a first optical core (1) ends at the surface (111a) of the first cleave (110a). An at least one second cleave (110b, . . . , 110h) comprises a surface (111b, . . . , 111h) to couple light out of the optical fiber, wherein at least one second optical core (2, . . . , 8) ends at the surface (111b, . . . , 111h) of the at least one second cleave (110b, . . . , 110h). The first and the at least one second cleave (110a, . . . , 110h) are staggered along the longitudinal axis (101) of the multi-core optical fiber (100).