Abstract:
A wireless communications system supports wireless connections between base station sector attachment points and wireless terminals. Individual wireless connections correspond to one of a downlink-macrodiversity mode of operation and a downlink non-macrodiversity mode of operation. A wireless terminal has, for each of its current connections, a base station assigned dedicated control channel for communicating uplink control information reports. The uplink control information reports include downlink signal-to-noise ratio reports based on measured received pilot channel signals. If a connection corresponds to a macrodiversity mode of operation, a reporting format for the SNR report is used which reports (i) an SNR value and (ii) an indication as to whether or not the connection is considered a preferred connection by the wireless terminal. If a connection corresponds to a non-macrodiversity mode of operation, a reporting format for the SNR report is used which reports an SNR value.
Abstract:
A wireless terminal receives a broadcast uplink interference report request conveying a requested report type and/or a locally unique base station identifier. The wireless terminal receives and measures broadcast reference signals, e.g., beacon and/or pilot signals, transmitted from a plurality of base station attachment points. Specific type interference reports relate a current serving connection base station attachment point to a selected base station attachment point corresponding to the received base station identifier. Generic type interference reports relate a current serving base station connection attachment point to other unspecified base station attachment points whose broadcast reference signals have been detected by the wireless terminal. Sub-types of generic reports include summation function and maximum function reports. Timing information is sometimes used to determine report sub-type and/or sector type of the selected attachment point. The wireless terminal generates the requested report and transmits it to the current connection attachment point.
Abstract:
A method of using a generated pilot signal inserted in a CQF slot of an uplink signaling channel to control the transmission power of data information independently of the transmission power of voice information regardless of whether the voice and data information are transmitted simultaneously.
Abstract:
First and second transmitters transmit signals communicating the same information, e.g., program segment, but at different times. Different carriers may, but need not be, used by the different transmitters. If a wireless terminal can not recover broadcast segment information from one carrier, the wireless terminal can switch to another transmitter and recover the information, e.g., on another carrier, since the broadcasts are intentionally offset in time. In some embodiments, the timing is offset such that a single channel receiver is able to recover signals corresponding to the same program segment from two sources, and perform a decoding and information recovery using input from both sources, where recovery using input from a single source is not possible. Symbol level timing synchronization of base stations is not required thereby allowing for simpler implementations and/or lower overhead, as compared to systems which require base stations to be synchronized to the symbol timing level.
Abstract:
Rather than transmitting a large full Broadcast-Multicast Services (BCMC) Parameters Message (BSPM) containing a full set of BSPM parameters pertaining to all active BCMC flows within a sector on an infrequent basis, smaller-sized differential or partial BSPMs are instead transmitted. Differential BSPMs contain updated information for existing flows or information for new flows, and because of their smaller size, can be transmitted more frequently than full BSPMs. A mobile terminal receiving a differential BSPM updates the flows with the information contained within the differential BSPM or adds the information contained within the differential BSPM for a new flow. Partial BSPMs divide the flow information contained in a large full BSPM over a plurality of smaller-sized partial BSPMs, which are separately and sequentially transmitted at different times. A mobile terminal receiving these partial BSPMs then reconstructs the full BSPM from a collection of received partial BSPMs.
Abstract:
Methods and apparatus for communicating transmission backlog information are described. Reporting control factors are utilized to expand reporting possibilities for a fixed bit size request report. At least one report control factor is determined as a function of channel quality information, power information, device capability information, and/or quality of service information. A transmission backlog report value is interpreted as a function of a reporting control factor. A wide range of quantization schemes for reporting transmission backlog information are facilitated corresponding to a small bit size report. A communications device can adaptively select a quantization request level closely matched to its current needs such as to provide an accurate representation of its current traffic channel resource needs. A communications device may request a number of frames in a request report and the same report may be indirectly requesting a number of communications segments needed to clear its transmission backlog.
Abstract:
Embodiments of the present disclosure include a system for managing cost in a wireless enabled advanced metering infrastructure (AMI). The system includes a remote server, a wide area network, and an access point device. The system further includes wireless enabled meters coupled to each other and to the access point through a neighborhood area network (NAN). The system includes datasinks. Each datasink is a wireless enabled meter capable of being a data coordinator and capable of receiving metering information from the sensors, processing metering information, and transmitting metering information to the access point. Moreover, each wireless enabled meter is capable of being a routing node and an endpoint node. Also, a first set of wireless enabled meters are configured to be routing nodes and a second set of wireless enabled meters are configured to be endpoint nodes based on a graph theoretic algorithm to reduce the cost of the AMI.
Abstract:
Systems and methodologies are described that facilitate communicating reverse link control information over OFDMA control channel(s) and CDMA control channel(s). Dedicated OFDMA control channel resources can be assigned to mobile device(s). Control information related to one or more logical control channels can be generated by a mobile device. Further, a physical control channel type (e.g., OFDMA control channel or a CDMA control channel) can be selected for sending the control information via the reverse link. For example, control information associated with periodic, logical control channels can be multiplexed and sent over the OFDMA control channel (e.g., utilizing the dedicated OFDMA control channel resources) while control information related to non-periodic, logical control channels can be transmitted over the CDMA control channel.
Abstract:
Methods and apparatus for efficient communication of backlog information, e.g., backlog information indicating amounts of uplink traffic waiting to transmitted by a wireless terminal are described. Delta backlog reports are used in addition to absolute backlog reports, thus reducing control signaling overhead, at least some information communicated in a delta backlog report being referenced with respect to a previously transmitted backlog report. A base station uses received backlog information from wireless terminals in determining scheduling of uplink traffic channel segments In some embodiments, the absolute backlog report uses a first fixed size report format, while the delta backlog report using a second fixed size report format, said second size being different from said first fixed size.