Abstract:
A liquid crystal display includes a plurality of gate lines and a plurality of data lines crossing over the gate lines while being electrically insulated from the gate lines. Pixels are placed at the cross regions of the gate and the data lines arranged in a matrix form. Each pixel has a switching circuit connected to the gate and the data lines. Data voltages are fed to the pixels such that the polarity of the pixels is inverted per a pixel group of two or more pixel rows. Gate voltages are applied to the neighboring first and second pixel groups such that the gate voltage applied to the pixel row of the first pixel group close to the second pixel group differs from the gate voltage applied to the pixel row of the first pixel group distant to the second pixel group.
Abstract:
A liquid crystal includes a plurality of pixels, a plurality of gate lines, and a plurality of data lines. The plurality of pixels are arranged in a matrix format. The plurality of gate lines transmit a gate signal to the pixels. The plurality of data lines cross the gate lines and transmit data voltages respectively corresponding to the plurality of pixels a plural number of times. A voltage that is the same as that of the data lines neighboring the first and last data lines is applied to the first and last data lines among the plurality of data lines at least once.
Abstract:
A gamma voltage generator for a liquid crystal display (LCD) capable of removing residual images by compensating a gamma voltage is presented. The gamma voltage generation apparatus adjusts the common voltage by the kickback voltage for the intermediate gray level, and tunes the gamma voltages other than the intermediate gray level gamma voltage. The adjustment of the gamma voltages other than the intermediate gray level gamma voltage is achieved in such a manner that the difference between the intermediate gray level kickback voltage and the kickback voltage at one of the gray levels other than the intermediate gray level is equal to half of the difference between the sum of the two inverted gamma voltages representing the intermediate gray level gamma voltages and the sum of the two inverted gamma voltages corresponding to the selected gray level.
Abstract:
A gamma voltage generator of a liquid crystal display (LCD) capable of removing residual images by compensating a gamma voltage. The gamma voltage generation apparatus adjusts the common voltage by the kickback voltage for the intermediate gray level, and tunes the gamma voltages other than the intermediate gray level gamma voltage. The adjustment of the gamma voltages other than the intermediate gray level gamma voltage is achieved in such a manner that the difference between the intermediate gray level kickback voltage and the kickback voltage at one of the gray levels other than the intermediate gray level is equal to half of the difference between the sum of the two inverted gamma voltages representing the intermediate gray level gamma voltages and the sum of the two inverted gamma voltages corresponding to the selected gray level.
Abstract:
A method of displaying a stereoscopic image provides first light having a first wavelength and second light having a second wavelength different from the first wavelength to the a display panel according to left-eye and right-eye images displayed on the display panel. Color correcting data are generated by correcting at least one of left-eye color data corresponding to the left-eye image and right-eye color data corresponding to the right-eye image such that a first color coordinate according to the first light and a second color coordinate according to the second light coincide with each other with respect to the same color. The left-eye and right-eye images are displayed using light having wavelengths different from each other, so that a display quality of the stereoscopic image may be enhanced.
Abstract:
A method of driving shutter glasses of a display system includes generating a display panel driving signal which drives a display panel of the display system, where the display panel displays a left image and a right image, generating a second three-dimensional (“3D”) synchronizing signal based on a first 3D synchronizing signal and the display panel driving signal, generating a third 3D synchronizing signal by adjusting an intensity of the second 3D synchronizing signal, generating a shutter control signal, which controls a left shutter and a right shutter of the shutter glasses, based on the third 3D synchronizing signal, and outputting the shutter control signal to the shutter glasses.
Abstract:
A stereoscopic image display device includes; a display device into which left-eye image data and right-eye image data are alternately input, and a shutter member including a left-eye shutter and a right-eye shutter, wherein the left-eye shutter and the right-eye shutter are opened in at least one of at least a part of an input period for the left-eye image data and at least a part of an input period for the right-eye image data.
Abstract:
A display device includes: a first insulation substrate having an upper surface and a lower surface; a transparent conductive layer disposed on the upper surface of the first insulation substrate; a gate line disposed on the lower surface of the first insulation substrate; a gate insulating layer disposed on the gate line; a semiconductor layer disposed on the gate insulating layer; a data line disposed on the semiconductor layer and connected to a source electrode and a drain electrode facing the source electrode; and a pixel electrode electrically connected to the drain electrode, where the gate line, the gate insulating layer, the semiconductor layer and the data line are sequentially disposed on the lower surface of the first insulation substrate.
Abstract:
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å.
Abstract:
A method for reducing noise of a touch panel includes: generating a detection signal including at least one contact region; generating a combination noise region including at least a portion of the at least one contact region; and generating a final detection signal. The generating the final detection signal includes removing the combination noise region from the detection signal.