Abstract:
A method of supporting multiple quality of service (QoS) levels for data being transmitted between two networking devices, such as customer equipment (CE), that use Ethernet and Asynchronous Transfer Mode (ATM). The method supports multiple QoS services in a network where a first CE is connected to a first edge device (interworking unit) using the Ethernet protocol and a second CE is connected to a second edge device using the ATM protocol. The edge devices may be directly connected together or they may be connected through a network backbone using any generally accepted network protocol. The first CE may be connected to the first edge device using a single Ethernet port, multiple Ethernet ports, a single virtual local area network (VLAN), or multiple VLAN's. The second CE is connected to an edge device using a single virtual circuit connection (VCC), a single virtual path connection (VPC), or multiple VCC's. The method ensures QoS for data transmitted between the first and the second CE via the Ethernet protocol to the ATM protocol and vice versa.
Abstract:
A network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.
Abstract:
A method and system for rerouting data in a communication network ring. The ring includes a plurality of nodes and a plurality of links. Each node includes a first port and a second port. Each first port is connected to a neighboring second port through a link of the plurality of links. The topology of the communication network ring is discovered and a forwarding database table is populated with static entries according to the discovered topology. Upon receiving notice of a failed link, which includes a source address of a node adjacent to the failed link, the topology and the source address of the node adjacent to the failed link is used to reconfigure the forwarding database table. Data is forwarded using the reconfigured forwarding database table without flooding the ring.
Abstract:
A method and system for interworking between an Ethernet communication network and an ATM network, in which a first network interface is operable to communicate with the Ethernet communication network using an Ethernet communication protocol. A second network interface is operable to communicate with the ATM communication network using an ATM protocol. A processing unit is in communication with the first network interface and the second network interface, in which the processing unit encapsulates frames received from the Ethernet network into ATM frames, decapsulates frames received from the ATM network to recover Ethernet frames and maps parameters corresponding to the received one of the ATM and Ethernet frames into the other of the ATM and Ethernet frames, the mapped parameters including connection configuration control plane information and data plane parameters corresponding to individual frames.
Abstract:
A method and system for interworking between an Ethernet communication network and a frame relay network, in which a first network interface is operable to communicate with the Ethernet communication network using an Ethernet communication protocol. A second network interface is operable to communicate with the frame relay communication network using a frame relay protocol. A processing unit is in communication with the first network interface and the second network interface, in which the processing unit terminates frames received from a one of the frame relay communication network and the Ethernet communication network and maps parameters corresponding to the received one of the frame relay and Ethernet frames into the other of the frame relay and Ethernet frames. The mapped parameters include circuit configuration control plane information and data plane parameters corresponding to individual frames.
Abstract:
A method and system for service interworking between an Ethernet communication network and an ATM network, in which a first network interface is operable to communicate with the Ethernet communication network using an Ethernet communication protocol. A second network interface is operable to communicate with the ATM communication network using an ATM protocol. A processing unit is in communication with the first network interface and the second network interface, in which the processing unit terminates frames received from a one of the ATM communication network and the Ethernet communication network and maps parameters corresponding to the received one of the ATM and Ethernet frames into the other of the ATM and Ethernet frames. The mapped parameters include connection configuration control plane information and data plane parameters corresponding to individual frames. The described methods can support single or multiple QoS levels.
Abstract:
A method and system for interworking between an Ethernet communication network and a frame relay network, in which a first network interface is operable to communicate with the Ethernet communication network using an Ethernet communication protocol. A second network interface is operable to communicate with the frame relay communication network using a frame relay protocol. A processing unit is in communication with the first network interface and the second network interface, in which the processing unit encapsulates frames received from the Ethernet network into frame relay frames, decapsulates frames received from the frame relay network to recover Ethernet frames and maps parameters corresponding to the received one of the frame relay and Ethernet frames into the other of the frame relay and Ethernet frames, the mapped parameters including connection configuration control plane information and data plane parameters corresponding to individual frames.
Abstract:
A network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.
Abstract:
A network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.