Abstract:
A system for managing holdover. The system may include a local oscillator device. The system may include a phase locked loop (PLL) device coupled to the local oscillator device and a reference clock source. The PLL device may obtain a reference clock signal from the reference clock source to produce an extracted clock signal. The system may include a drift monitoring device coupled to the local oscillator device and the PLL device. The drift monitoring device may determine an amount of oscillator drift within the local oscillator device using the extracted clock signal and an oscillator signal from the local oscillator device. The system may include a drift compensation device coupled to the drift monitoring device and the PLL device. The drift compensation device may transmit a drift compensation signal to the PLL device based on the amount of oscillator drift.
Abstract:
A method of routing traffic through a packet network having a mesh physical topology. At least two types of network primitive are defined, each type of network primitive providing a respective model of traffic forwarding through at least two neighbour nodes of the network. A network model encompassing at least a portion of the network is constructed using a set of two or more interconnected network primitives. The network model has nodes and links corresponding to respective nodes and lines of the network. Respective forwarding information is computed for each node of the network model. For each node of the network model, the respective computed forwarding information is installed in a forwarding database of the corresponding node of the network, such that traffic is forwarded by each node of the network in accordance with the respective computed forwarding information.
Abstract:
An network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.
Abstract:
A network includes an edge node configured to define per hop behaviors using a set of bits in an Ethernet header of a frame and a core node configured to receive the frame and to forward the frame according to the per-hop-behaviors. The network can also include a defined set of differentiated service classes, each differentiated service class associated with the set of per hop behaviors, indicated in the set of priority bits. The network classifies the Ethernet frame based on at least one of a set of priority bits or information in at least one protocol layer in the frame header of the Ethernet frame and determines a per hop behavior based on the classification.
Abstract:
A method of routing traffic through a packet network having a mesh physical topography. At least two types of network primitive are defined, each type of network primitive providing a respective model of traffic forwarding through at least two neighbour nodes of the network. A network model encompassing at least a portion of the network is constructed using a set of two or more interconnected network primitives. The network model has nodes and links corresponding to respective nodes and lines of the network. Respective forwarding information is computed for each node of the network model. For each node of the network model, the respective computed forwarding information is installed in a forwarding database of the corresponding node of the network, such that traffic is forwarded by each node of the network in accordance with the respective computed forwarding information.
Abstract:
A method of supporting multiple quality of service (QoS) levels for data being transmitted between two networking devices, such as customer equipment (CE), that use Ethernet and Frame Relay (FR). The method supports multiple QoS services in a network where a first CE is connected to a first edge device (interworking unit) using the Ethernet protocol and a second CE is connected to a second edge device using the FR protocol. The edge devices may be directly connected together or they may be connected through a network backbone using any generally accepted network protocol. The first CE may be connected to the first edge device using a single Ethernet port, multiple Ethernet ports, a single virtual local area network (VLAN), or multiple VLAN's. The second CE is connected to an edge device using a single data link connection (DLC), or multiple DLC's. The method ensures QoS for data transmitted between the first and the second CE via the Ethernet protocol to the FR protocol and vice versa.
Abstract:
A method and system for interworking between an Ethernet communication network and a frame relay network, in which a first network interface is operable to communicate with the Ethernet communication network using an Ethernet communication protocol. A second network interface is operable to communicate with the frame relay communication network using a frame relay protocol. A processing unit is in communication with the first network interface and the second network interface, in which the processing unit terminates frames received from a one of the frame relay communication network and the Ethernet communication network and maps parameters corresponding to the received one of the frame relay and Ethernet frames into the other of the frame relay and Ethernet frames. The mapped parameters include circuit configuration control plane information and data plane parameters corresponding to individual frames.
Abstract:
A method of routing traffic through a packet network having a mesh physical topography. At least two types of network primitive are defined, each type of network primitive providing a respective model of traffic forwarding through at least two neighbor nodes of the network. A network model encompassing at least a portion of the network is constructed using a set of two or more interconnected network primitives. The network model has nodes and links corresponding to respective nodes and lines of the network. Respective forwarding information is computed for each node of the network model. For each node of the network model, the respective computed forwarding information is installed in a forwarding database of the corresponding node of the network, such that traffic is forwarded by each node of the network in accordance with the respective computed forwarding information.
Abstract:
A system for controlling packet forwarding through a point-to-point (p2p) connection between first and second end nodes of a packet network domain having a mesh topology. The system comprises a sub-ring network instantiated in the network domain, the sub-ring network comprising a pair of topologically diverse ring spans extending between the first and second end nodes. Each of the end nodes is controlled to forward packets of the p2p connection through the sub-ring network in accordance with a ring network routing scheme, and an intermediate node traversed by one of the ring spans is controlled to forward packets of the p2p connection through the ring span in accordance with a linear path routing scheme.
Abstract:
An edge node of a communication network and method to classify incoming Ethernet traffic based on predetermined criteria. An ingress switch is configured to receive an incoming Ethernet frame. A frame classifier is configured to identify flows and to correlate a flow to a corresponding bandwidth profile and corresponding forwarding treatments defined for the flow.