Abstract:
A wellbore servicing method comprises converting a water into an electrochemically activated water, preparing a wellbore servicing composition comprising the electrochemically activated water, and placing the wellbore servicing composition in a wellbore. Also, a cement composition comprises a cement and an electrochemically activated water.
Abstract:
The invention is for a method of forming and delivering a treatment fluid into a wellbore. In one aspect, a method is provided for pumping a first fluid having a relatively high concentration of a particulate suspended therein and pumping a second fluid having either none of the particulate or a relatively low concentration of the particulate suspended therein, and then merging at least the first and second fluids to form a treatment fluid having a merged concentration of the particulate. According to this aspect, the first fluid has a relatively high concentration of a hydratable additive and the second fluid has either none or a relatively low concentration of the hydratable additive.
Abstract:
Provided are methods of modifying the surface stress-activated reactivity of proppant particulates used in subterranean operations. In one embodiment, the methods comprise: providing a plurality of particulates, at least one of which comprises a mineral surface; providing a surface-treating reagent capable of modifying the stress-activated reactivity of a mineral surface of a particulate; and allowing the surface-treating reagent modify the stress-activated reactivity of at least a portion of the mineral surface of at least one particulate. In other embodiments, the methods comprise the use of particulates comprising a modified mineral surface in fluids introduced into subterranean formations.
Abstract:
At least one method is provided comprising: providing a tackifying compound and at least one surfactant; mixing the surfactant with the tackifying compound to form a tackifying compound surfactant mixture; coating the tackifying compound surfactant mixture onto particulates to form coated particulates; mixing the coated particulates into a treatment fluid; and placing the treatment fluid into a subterranean formation.
Abstract:
Methods are provided that include a method of creating a stable slurry of coated particulates wherein the slurry is capable of being stored for at least 2 hours before use comprising the steps of: providing resin coated particulates wherein the resin comprises a resin that does not completely cure unless it is at least one of exposed to a temperature above about 175° F. or exposed to an external catalyst; and, substantially suspending the resin coated particulates in a servicing fluid to create a stable resin coated particulate slurry. Methods are provided that include a method of creating a stable slurry of coated particulates wherein the slurry is capable of being stored for at least 2 hours before use comprising the steps of: providing tackifier coated particulates; and, substantially suspending the tackifier coated particulates in a servicing fluid to create a tackifier coated particulate slurry.
Abstract:
Treatment fluids comprising gelling agents that comprise crosslinkable polymers and certain biopolymers, and methods of use in subterranean operations, are provided. In one embodiment, the present invention provides a treatment fluid comprising: an aqueous base fluid; a crosslinking agent; and a gelling agent comprising a polymer that is a crosslinkable polymer, and a polymer that is a biopolymer wherein a molecule of the biopolymer (1) consists only of glucose, or (2) has a backbone comprising one or more units that comprise at least (a) one glucose unit and (b) one linear or cyclic pyranose-type monosaccharide unit, wherein (a) and (b) have different molecular structures.
Abstract:
The present invention relates to a method and system for hydrating a gel for treating a wellbore penetrating a subterranean formation. The method includes directing a base fluid through an inlet into a mixer having an inner chamber housing a plurality of impellers extending radially from and rotating about a hub, causing a centrifugal motion of the base fluid, feeding a quantity of gel into the mixer, mixing the gel with the base fluid and discharging the now-hydrated gel from the inner chamber through an outlet of the mixer. A prewetting device may also be used. Thereafter, a variety of additives may be added to the gel fluid mix to form a fluid treatment to be introduced into a subterranean formation.
Abstract:
The present invention provides a method of reducing the viscosity of a viscosified treatment fluid comprising the steps of: providing a viscosified treatment fluid that comprises water, a crosslinked gelling agent, and a delinking composition capable of delinking at least a portion of the crosslinked gelling agent wherein the delinking composition comprises a delinking agent; and allowing the crosslinked gelling agent and the delinking composition to interact so as to delink at least a portion of the crosslinked gelling agent. The present invention also provides methods of reusing viscosified treatment fluids, methods of fracturing subterranean formations, and methods of gravel packing subterranean formations. The present invention also provides delinking compositions capable of delinking at least a portion of a crosslinked gelling agent; and a viscosified treatment fluid comprising water, a crosslinked gelling agent, and a delinking composition capable of delinking at least a portion of the crosslinked gelling agent wherein the delinking composition comprises a delinking agent.
Abstract:
The present invention relates to subterranean fracturing operations, and more particularly to fracturing fluids that includes a fluid loss control additive, and methods of using such fracturing fluids in fracturing subterranean formations. In one embodiment, a fracturing fluid of the present invention includes a viscosifier; and a fluid loss control additive that includes a deformable, degradable material.
Abstract:
Environmentally safe viscous well treating fluids and methods are provided by the present invention. The treating fluids are basically comprised of water, a viscosity producing polymer, a boron cross-linking agent for cross-linking the polymer, and a delayed cross-link delinker that comprises polysuccinimide and polyaspartic acid.