摘要:
Methods comprising: providing at least a plurality of liquid hardenable resin coated particulates that have been at least partially coated with a liquid hardenable resin component; providing at least a plurality of liquid hardening agent coated particulates that have been at least partially coated with a liquid hardening agent component; suspending the liquid hardenable resin coated particulates and the liquid hardening agent coated particulates in a treatment fluid; and placing the treatment fluid into a subterranean formation. Methods comprising: providing at least a plurality of coated particulates that have been at least partially coated with one component of a two component resin system; coating at least a plurality of the coated particulates on a job site with a second component of a two component resin system; suspending the coated particulates in a treatment fluid; and placing the treatment fluid into a subterranean formation.
摘要:
Methods comprising: providing a consolidating agent emulsion composition that comprises an aqueous fluid, a surfactant, and a consolidating agent; and coating at least a plurality of particulates with the consolidating agent emulsion to produce a plurality of consolidating agent emulsion coated particulates. Methods comprising: providing a treatment fluid comprising a consolidating agent emulsion comprising an aqueous fluid, an amine surfactant, and a consolidating agent; and introducing the treatment fluid into a subterranean formation. Methods comprising the steps of: coating a plurality of particulates with a consolidating agent emulsion to produce consolidating agent emulsion coated particulates; providing a treatment fluid comprising an aqueous fluid, a surfactant, and a consolidating agent; introducing the treatment fluid into a subterranean formation. Consolidating agent emulsion compositions comprising: an aqueous fluid; a surfactant; and a consolidating agent comprising a non-aqueous tackifying agent or resin.
摘要:
The invention provides a method of treating a subterranean formation penetrated by a wellbore, the method comprising the steps of: (a) mixing a particulate and an active material to obtain an at least partially coated particulate, wherein: (i) water forms a contact angle of less than 90 degrees with a surface of the particulate, (ii) the active material is capable of forming a coating on the particulate, (iii) the active material forms a contact angle less than 90 degrees with the particulate, and (iv) water forms a contact angle of greater than 90 degrees with a layer of the active material; (b) mixing the at least partially coated particulate and a carrier fluid to obtain a treatment fluid; and (c) introducing the treatment fluid into the subterranean formation through the wellbore to deposit the at least partially coated particulate into the subterranean formation.
摘要:
One embodiment of the present invention provides methods of treating a portion of a subterranean formation, comprising providing a treatment fluid comprising a derivatized cellulose gelling agent wherein the derivatized cellulose gelling agent is made by reacting cellulose with an electrophilic agent to form a 1,3-cis diol or an alpha carboxylic acid; and, placing the treatment fluid in the portion of the subterranean formation. Another embodiment of the present invention provides methods of derivatizing cellulose, comprising reacting cellulose with an electrophilic agent to form a 1,3-cis diol or an alpha carboxylic acid. Another embodiment of the present invention provides crosslinkable treatment fluids for use in subterranean formations comprising a derivatized cellulose gelling agent wherein the derivatized cellulose gelling agent comprises a cellulose that has been derivatized to comprise an alpha carboxylic acid or a compound comprising a 1,3-cis diol moiety.
摘要:
The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. One embodiment of the present invention provides a method of preparing coated particulates comprising the steps of coating particulates with a resin or a tackifying agent to create pre-coated particulates; and, covering the pre-coated particulates with a partitioning agent to create coated particulates. Another embodiment of the present invention provides a method of treating a subterranean formation comprising the steps of providing coated particulates made by a method comprising the steps of substantially coating particulates with a resin or a tackifying agent to create pre-coated particulates; and, substantially covering the pre-coated particulates with a partitioning agent to create coated particulates; substantially slurrying the coated particulates in a servicing fluid to create a coated particulate slurry; and, placing the coated particulate slurry into the subterranean formation.
摘要:
In one embodiment, the present invention provides a method of increasing the viscosity of a treatment fluid comprising the steps of: adding a networking agent to the treatment fluid, wherein the networking agent is represented by the formula: Y—X—[B(OR)2]n, wherein: Y is at least partially capable of forming a crosslink between a gelling agent molecule, a second networking agent, and/or a combination thereof; X is at least partially capable of preventing or inhibiting a reaction represented by the formula: ROH+R′B(OR)2→R′OH+B(OR)3; R and R′ are a hydrogen, an alkyl group, an aryl group, or a combination thereof; and n is a positive integer greater than or equal to 1; allowing at least one crosslink to form between the networking agent and a gelling agent molecule, a second networking agent, and/or a combination thereof; and allowing the viscosity of the treatment fluid to increase. Methods of treating a portion of a subterranean formation, networking agent compositions, and treatment fluid compositions also are provided.
摘要:
The present invention relates to methods for making proppants on-the-fly during subterranean treatment operations. Some embodiments of the present invention provide methods of preparing proppant on-the-fly comprising providing discrete amounts of a resin mixture that comprises a resinous material and a filler material; placing the discrete amounts of resin mixture into a well bore comprising a treatment fluid; and, allowing the discrete amounts of the resin mixture to substantially cure and form proppant particles while inside the treatment fluid. Other embodiments of the present invention provide methods of fracturing a portion of a subterranean formation using proppant prepared on-the-fly.
摘要:
Methods of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the partitioning agent comprises a subterranean treatment chemical; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the subterranean formation.
摘要:
Methods and compositions for sealing subterranean zones having temperatures in the range of from about 80° F. to about 300° F. are provided. A method of the invention is basically comprised of the steps of providing a subterranean zone sealing composition that becomes substantially rigid when exposed to subterranean zone temperatures above about 80° F. and has a pH above about 8.5 comprised of water, a substantially fully hydrated depolymerized polymer and a cross-linking agent. The sealing composition is introduced into the subterranean zone whereby it becomes rigid and seals the zone. The sealing composition can subsequently be removed by contact with a fluid having a pH below about 8 when a boron compound is utilized as the cross-linking agent.
摘要:
A process of increasing the viscosity of a gel, or the yield of a hydratable material includes heating a hydratable material, an aqueous component or both, prior to mixing the hydratable material with the aqueous component. In certain instances, the aqueous component is heated to a temperature of at least about 100° F., and the hydratable material component and the heated aqueous component are mixed together to form a gel in certain instances, the hydratable material component is heated to a temperature of at least about 100° F., and the heated hydratable material component and the aqueous component are mixed together to form a gel.