Abstract:
The present invention provides for communication of data to and from isochronous data sources and sinks. Preferably, a portion of bandwidth on the link is also dedicated to convey data to and from non-isochronous sources and sinks, as well as to permit conveying housekeeping information (such as information relating to data sources and destinations) and status and control maintenance information. A management port is included in the isochronous switching devices to allow monitoring or diagnostic access to the serial isochronous data stream to and from all physical layer portion connections. Accessing one connection's data stream does not affect normal operation of the other connections.
Abstract:
A data communication system such as a local area network or a wide area network capable of transmitting isochronous data. The system conveys both isochronous data and non-isochronous data by time multiplexing data into a recurring frame structure on a 4-bit nibble basis. The arriving data is de-multiplexed at a hub into separate channels which are forwarded to separate hardware appropriate for handling the particular data stream. The data is passed hierarchically from a source, through a node, and to a hub. The hub places the data into an internal connection memory for switching onto a high bandwidth bus for distribution to other destination hubs, nodes, or sinks, except, where the source node and destination node are attached to the same hub, the hub provides a local loopback to the destination node, thus avoiding the need to place the transmitted data onto the bus. This system conserves room on the bus for other isochronous and non-isochronous data.
Abstract:
A network for transferring packet data in a frame structure, preferably mixed with isochronous data is provided. The frame structure is a continuously repeating structure, with each frame having a number of time slots. Certain ones of the time slots are available for transmitting packet data. The packet data is re-timed, e.g., by using a FIFO to output the data nibble-wise as required by the frame structure. Similar re-timing can be used for isochronous data so that the frame structure defines time-division multiplexing of the packet data and isochronous data. A four/five encoding scheme provides sufficient encoding efficiency that both the packet data and other data can be accommodated without degrading the data rate of the packet data. The encoding scheme provides extra symbols which can be used for transferring "no carrier" information, or "frame alignment" messages. Preferably, the frame structure is translated to and from a packet structure to permit the present invention to be used with previously available packet circuitry such as a media access controller and a hub repeater circuit. Latency of the FIFO can be reduced by pre-filling with packet preambles, and/or sub-latency propagation of preamble bytes, or providing special MACs which do not output preambles, and using the buffer circuitry to output preambles.