Abstract:
A system establishes a virtual private network (VPN) tunnel to a destination and determines a next hop for the VPN tunnel. The system inserts the next hop, and an address associated with the destination, into an entry of a first table. The system inserts the next hop, and a tunnel identifier corresponding to the established VPN tunnel, into an entry of a second table. The system associates one or more security parameters, used to encrypt traffic sent via the VPN tunnel, with the tunnel identifier.
Abstract:
A virtual private network (VPN) tunnel is established that extends from a source spoke to a destination spoke in a hub-and-spoke enterprise network. Prior to establishing the VPN tunnel, packets are sent from the source spoke to the destination spoke through the hub network. In this manner, packets are not dropped while the VPN tunnel is being set up. The VPN tunnel is established by querying a server for the network address of a destination router in the destination spoke, then setting up the VPN tunnel using a secure communication protocol. An extension to the Internet Key Exchange (IKE) protocol is used to obtain the private network address of the destination router during setup of the VPN tunnel. A forwarding table is updated after the VPN tunnel is established to reroute the packets through the new VPN tunnel.
Abstract:
Systems, apparatus, methods, and computer program products for multicast access control are provided to analyze incoming data based on a source zone and a destination zone of the incoming data. Appropriate access control rules are applied to incoming data based on the results of the analysis. Additional implementations of a multicast access control include using a proxy rendezvous point operable to function as a rendezvous point in place of a physical rendezvous point.
Abstract:
A method and corresponding system for providing for recovering from a failure of a wired link used for communication between the first access point and a wired network. The first access point has at least two radios including a first radio and a second radio each for providing a wireless communications link. The method including selectively configuring the radios in an access mode for enabling a communications path with a corresponding client node to enable each client node to have a communication path via the first access point to the wired network, wherein the first and second radios are enabled to be associated with a first and second client node, respectively. The method and system includes providing communications paths for the client nodes to the wired network in response to detection of loss of the wired link to the first access point by selectively reconfiguring the second radio to a backhaul mode.
Abstract:
A method and system for selecting a route in a wireless network for the transmission of a data packet between wireless nodes in said network using a modified link-state routing algorithm wherein only a limited number of broadcast messages are generated to synchronize the link-state database throughout the wireless network. A subset of nodes called portal nodes within the network are elected to do the broadcasting for the entire network. Each portal node broadcasts an announcement of its identity to all of the wireless nodes. Each wireless node responds to these broadcasts to select one of the portal nodes as its root portal node. It then identifies a unicast route back to its root portal node, and sends a link-state register message to this portal node. These link-state register messages received by each portal node are aggregated by them and are broadcast to each of the wireless nodes for storage. When a data packet is thereafter received by a wireless node from a neighboring node, it detects if the data packet satisfies one of a plurality of predetermined conditions and rebroadcasts the data packet to neighboring wireless nodes if none of the conditions is satisfied.
Abstract:
A method and system for selecting a route in a wireless network for the transmission of a data packet between wireless nodes in said network using a modified link-state routing algorithm wherein only a limited number of broadcast messages are generated to synchronize the link-state database throughout the wireless network. A subset of nodes called portal nodes within the network are elected to do the broadcasting for the entire network. Each portal node broadcasts an announcement of its identity to all of the wireless nodes. Each wireless node responds to these broadcasts to select one of the portal nodes as its root portal node. It then identifies a unicast route back to its root portal node, and sends a link-state register message to this portal node. These link-state register messages received by each portal node are aggregated by them and are broadcast to each of the wireless nodes for storage. When a data packet is thereafter received by a wireless node from a neighboring node, it detects if the data packet satisfies one of a plurality of predetermined conditions and rebroadcasts the data packet to neighboring wireless nodes if none of the conditions is satisfied.
Abstract:
A backup device detects that a session timer associated with a session in a session table of the backup network device has expired and ages out the session from the session table based on whether a first message has been sent to a master network device regarding the session and whether a second message has been received from the master network device regarding the session.
Abstract:
Wireless access points detect neighboring wireless access points in different subnets. Upon connecting with a wireless client, a wireless access point determines predictive roaming information for the wireless client. Predictive roaming information identifies the wireless client; its home network subnet; and includes connection information associated with the wireless client. The wireless access point forwards the predictive roaming information associated with a wireless client to neighboring wireless access points while the wireless client is still connected with the wireless access point. Neighboring wireless access points store received predictive roaming information. Upon connecting with a wireless client, a neighboring wireless access point determines if the wireless client matches the stored predictive roaming information. If so, the neighboring wireless access point uses the predictive roaming information to quickly connect with the wireless client and to establish a tunnel to redirect network traffic associated with the wireless client through to its home subnet.
Abstract:
A request to receive multicast data, associated with a multicast group, may be transmitted. The request may be transmitted via a tunnel. Group keys may be received in response to the request. The group keys may be based on the multicast group. An encapsulated packet may be received via another tunnel. The encapsulated packet may be processed, using the group keys, to obtain a multicast packet associated with the multicast data. The multicast packet may be forwarded to at least one multicast recipient.
Abstract:
A system includes a first network device and a second network device. The first network device includes a group of first logical portions and is configured to detect a problem with one of the first logical portions, and transmit a message identifying the one first logical portion. The second network device includes a group of second logical portions, where the group of second logical portions corresponds to the group of first logical portions. The second network device is configured to receive the message from the first network device, and activate the one second logical portion corresponding to the one first logical portion in response to receiving the message.