Abstract:
A circuit for driving an organic light-emitting diode (OLED) in a thinfilm transistor electroluminescent (TFT-EL) display at least includes the first and the second transistors. Wherein, a data line and a capacitor are respectively connected to the source and drain electrodes of the first transistor. The capacitor is charged from the data line by turning on the first transistor. And, the capacitor and an OLED are respectively connected to the source and drain electrodes of the second transistor. The capacitor is discharged by turning on the second transistor, and results in light emitting of the OLED.
Abstract:
The disclosure provides a touch panel which includes: a first substrate; a second substrate disposed oppositely to the first substrate, and the first substrate or the second substrate has a thickness smaller than or equal to 0.3 mm; a liquid crystal layer disposed between the first substrate and the second substrate; and a touch sensor directly formed on a surface of the second substrate away from the liquid crystal layer, wherein the touch sensor includes a patterned transparent conducting layer.
Abstract:
In a method of manufacturing a liquid crystal display, first, a panel assembly structure including a first substrate, a second substrate and several sealants connecting inner surfaces of the first and second substrate is provided. The first substrate includes several third substrates. The second substrate includes several fourth substrates corresponding to the third substrates, respectively. Each third substrate, the corresponding fourth substrate and the corresponding sealant form a panel. First and second polarizers are adhered correspondingly to outer surfaces of the third and fourth substrates. The panels are separated after the adherence of the first and second polarizers.
Abstract:
A thin film transistor liquid crystal display (TFT LCD) has row pairs of pixels. Each row pair of pixels includes first row pixels arrayed in a first row, and second row pixels arrayed in a second row, together forming columns of pixels. First and second data drivers are provided for each column of pixels. Scan line drivers are provided for each row pair of pixels so that every pixel in a row pair of pixels is connected to the same scan line driver. Every first row pixel in a column of pixels is connected to the same first data driver, and every second row pixel in a column of pixels is connected to the same second data driver.