Abstract:
Dispersion compensator apparatus comprising 1XM, MXN and NXN couplers, where the coupling ratios of the MXN and NXN couplers are selected such that the dispersion compensator provides a desired amount of dispersion compensation.
Abstract:
An optical differential phase shift key (DPSK) receiver, a method of demodulating an optical DPSK modulated signal and an optical processor capable of operating as either a DPSK receiver or DPSK transmitter. In one embodiment, the DPSK receiver includes: (1) an optical waveguide and a delay line associated therewith configured to receive simultaneously an optical DPSK modulated signal, (2) a coupler having at least two inputs and at least four outputs, the at least two inputs configured to terminate the optical waveguide and the delay line, the delay line having a path length difference that delays the optical DPSK modulated signal by at least one timeslot relative to the optical waveguide and (3) photodetectors associated with the at least four outputs and configured to provide signals indicative of digital data contained in components of the optical DPSK modulated signal.
Abstract:
An apparatus and method are provided for manipulating light beams propagated through PLCs in free space. Light beams propagated in through an input/output waveguide of a PLC are propagated through a waveguide array to generate a phased array output at an edge facet of the PLC. The phased array output at the edge facet is spatially Fourier transformed by a lens in free space, generating a spectrally resolved image at the back focal plane of the lens. The spectrally resolved image is reflected, at least in part, by a reflector device and coupled into a desired waveguide array of a PLC to produce a desired output.
Abstract:
A low-loss integrated optical coupler includes at least three substantially similar optical couplers, adjacent ones of the optical couplers interconnected via at least one set of waveguides, each of the sets of waveguides comprising a path-length difference between the waveguides therein. In one embodiment of the present invention, the multi-section optical coupler comprises at least two arms and the path-length differences are adjustable such that signals traversing the at least two arms undergo a relative phase shift, such that a desired output power splitting ratio for the multi-section optical coupler is achieved. Alternatively, the optical coupler is implemented in an inventive optical device that functions at least, as an optical switch or an optical splitter.
Abstract:
The inventor proposes herein a novel optical monitor requiring only a single fiber-coupled photodetector. In one embodiment of the present invention, the optical monitor further includes an optical coupler for tapping a portion of an optical signal, a tunable filter for filtering the tapped optical signal at a predetermined frequency, and a Faraday rotator mirror for removing any polarization dependence of the tapped optical signal and for reflecting the filtered optical signal back through the tunable filter and the coupler. Subsequently, the photodetector of the optical monitor measures the power of the filtered optical signal. The optical spectrum of the optical signal is thus measured by scanning the tunable filter across the band of the optical signal and measuring the power of the optical signal as a function of the optical frequency of the tunable filter.
Abstract:
Timing alignment between a pulse carver (i.e., intensity modulator) and a phase modulator, e.g., in a return-to-zero (RZ) differential phase-shift keying (DPSK) optical transmitter, is monitored by filtering a signal from the transmitter and measuring the power of the filtered signal. In certain embodiments, the filter has a birefringent device (such as a polarization-maintaining fiber) and a polarizer. The polarizer may be a rotating polarizer with a rotating quarter-wave plate in front of it. In other embodiments, the filter is a periodic filter such as a Mach-Zehnder interferometer or an etalon filter. Regardless, the measured power may be used to generate control signals used to variably delay the signals that drive the phase modulator and/or the pulse carver to compensate for detected misalignment. The measured power may also be used to monitor the bit-error-rate degradation caused by timing misalignment between the pulse carver and the phase modulator.
Abstract:
Various exemplary embodiments relate to an integrated optical device including: a semiconductor waveguide on a substrate; a dielectric waveguide on a substrate optically coupled to the semiconductor waveguide; and a germanium device on the semiconductor waveguide optically coupled to the semiconductor waveguide.
Abstract:
An optical filter or multiplexer/demultiplexer, including a plurality of optical waveguides forming a planar structure. Each optical waveguide has a total length including one or more first segments with a first width and at least one or more second segments with a second width, the first width being larger than the second width. The sum of lengths of the one or more first segments in each optical waveguide is larger than half the total length of the waveguide.
Abstract:
Various exemplary embodiments relate to an integrated optical device including: a semiconductor waveguide on a substrate; a dielectric waveguide on a substrate optically coupled to the semiconductor waveguide; and a germanium device on the semiconductor waveguide optically coupled to the semiconductor waveguide.