Abstract:
A Bluetooth earphone and a lanyard structure thereof are provided. The Bluetooth earphone includes an earphone body and a lanyard structure. The lanyard structure includes a lanyard and a clip element. The lanyard is disposed on the clip element. The clip element includes two hooks gripping the earphone body for combining the lanyard structure with the earphone body.
Abstract:
A driving module drives a display device having a plurality of pixel switches. The driving module includes a gate driving circuit, a plurality of switch components, and a shorting line. The gate driving circuit includes a plurality of output ends correspondingly coupled to the plurality of the pixel switches through a plurality of gate lines for outputting a plurality of gate driving signals and turning on the plurality of the pixel switches. The plurality of the gate lines are coupled to the shorting line through the switch components. Each control end of the switch components is coupled to the gate driving circuit for receiving the gate driving signals in order to refresh the state of the switch components.
Abstract:
A wireless handset includes: a Bluetooth RF module for performing wireless communication with a Voice over Internet Protocol (VoIP) communication device having Bluetooth communication functionality; a processing circuit, coupled to the Bluetooth RF module, for remotely controlling a VoIP software application, which is embedded in the VoIP communication device, through the Bluetooth RF module according to Bluetooth Human Interface Device specifications; and an audio input/output module, coupled to the processing circuit, for receiving audio waves to input an audio signal into the processing circuit, and/or outputting audio waves; wherein the wireless handset provides web phone communication functionality by utilizing the VoIP software application.
Abstract:
A method for use in a display panel is disclosed. The method includes providing M bus lines in the bus area for receiving a plurality of clock signals, M being a positive integer greater than 3; providing a plurality of signal lines to separately provide the clock signals from the M bus line to the circuit area, the circuit area configured to provide the plurality of sequential gate line signals in response to the clock signals, the plurality of signal lines including a plurality of adjacent signal-line pairs, each adjacent signal-line pair having a resistance difference, said signal lines including a maximum resistance value and a minimum resistance value, and wherein the M bus lines are arranged such that the resistance difference in any one of the adjacent signal-line pairs is smaller than a value difference between the maximum resistance value and the minimum resistance value.
Abstract:
A display panel and its gate driving circuit are provided. The gate driving circuit includes a plurality of shift registers. Each of the shift registers includes a first scan signal generator for generating a first scan signal, a second scan signal generator for generating a second scan signal, a first control unit for generating a first control signal, and a second control unit for generating a second control signal. Here, the first control signal and the second control signal are shared by the first scan signal generator and the second scan signal generator. Based on the above, the abatement of signal intensity of the first scan signal and the second scan signal caused by circuit sharing can be precluded, and a chip area occupied by each of the shift registers can be reduced.
Abstract:
A display panel is disclosed, which includes a substrate, a shift register array, plural scan lines, a compensating circuit, a first repair line, and a second repair line. The shift register array having plural shift registers is disposed on a non-display area of the substrate. The scan lines connect to the shift registers respectively to drive plural display units. The first repair line and the second repair line are connected to the compensating circuit and bridged over two ends of each scan line in the non-display area, respectively.
Abstract:
An earphone includes a body with a surrounding side, a rotatable loop and an ear hook. The rotatable loop is pivotally connected with the body on two opposite ends of the surrounding side. The body and the rotatable loop can rotate with respect to a first axis and with respect to each other. The ear hook is pivotally mounted on one side of the rotatable loop near where the rotatable loop is connected with the body, and the ear hook can rotate with respect to a second axis, which is different from the first axis.
Abstract:
A shift register includes multiple cascade-connected stages. Each stage generates an output signal in response to a clock signal and a first control signal. Each stage includes a pull-up module, a pull-up driving module, a first pull-down module, a second pull-down module, and a third pull-down module. The pull-up module is used for providing the output signal based on the clock signal. The pull-up driving module turns on the pull-up module in response to a first control signal. The first pull-down module adjusts voltage level on the first node to a first supply voltage in response to a second control signal. The second pull-down module adjusts voltage level on the output end to a second supply voltage in response to the second control signal. The third pull-down module adjusts voltage level on the second node to a third supply voltage in response to a third control signal.
Abstract:
A flat-panel display device having test architecture is disclosed for disposing shorting bars without sacrificing wiring-on-array bus layout area of the outer-lead-bonding region. The flat-panel display device essentially includes a substrate having a plurality of driving integrated-circuit (IC) mounting areas, a plurality of signal lines and transmission lines disposed on the substrate, and a plurality of shorting bars disposed on the driving IC mounting areas. Each shorting bar is coupled to a corresponding signal line and a corresponding transmission line. Furthermore, in order to take out the laser-cutting process in the fabrication of the flat-panel display device for saving production cost, each driving IC mounting area is further disposed with a plurality of transistors for controlling the signal connections between the shorting bars and the signal lines, and also for controlling the signal connections between the shorting bars and the transmission lines.
Abstract:
An exemplary shift register includes a plurality of transistors. The transistors are subjected to the control of a start pulse signal, a first clock signal and a second clock signal to generate a gate driving signal. The first clock signal and the second clock signal are phase-inverted with respect to each other. A logic low level of the first clock signal and another logic low level of the second clock signal are different from each other. Moreover, the transistors are negative threshold voltage transistors. A potential at the gate of the each of the transistors is lower than another potential at the source/drain of the transistor at the situation of the transistor being switched-off state.