Abstract:
An example method for reviewing documents includes scoring documents using an artificial intelligence model, and selecting a subset of highest scoring documents. The method further includes inserting a number of randomly-selected documents into the subset of highest scoring documents to form a set of documents for review, wherein a reviewer cannot differentiate between the randomly-selected documents and the subset of highest scoring documents included in the set of documents for review, and presenting the set of documents for review by the reviewer.
Abstract:
A system for controlling a roller shade having a roller tube windingly receiving a shade fabric varies roller tube rotational speed for constant linear shade speed. The desired linear shade speed, roller tube diameter and shade fabric thickness and length are stored in a memory for use by a microprocessor. Preferably, the roller tube rotational speed is varied by the microprocessor depending on shade position determined by signals from Hall effect sensors. The microprocessor maintains a counter number that is increased or decreased depending on direction of rotation. Based on the counter number, the microprocessor determines shade position and a corrected rotational speed for the desired linear shade speed. Preferably, the microprocessor controls roller tube rotational speed using a pulse width modulated signal. The system may be used to control first and second roller shades having roller tubes of differing diameters or shade fabrics of varying thicknesses.
Abstract:
Novel methods and apparatus are disclosed for handling carriers for soft contact lenses in a lens manufacturing system. In accordance with a first aspect of the invention, article handling devices are located beneath a pre-cure station and a curing station of the system to move lens carriers within those stations. Pursuant to a second aspect of the invention, in a preferred embodiment multiple sets of assemblies are provided for moving a multitude of lens carriers into, through, and out from the pre-cure station and the curing station. In accordance with a third aspect of the invention, the curing station is provided with an intelligent buffer.
Abstract:
Novel methods and apparatus are disclosed for handling carriers for soft contact lenses in a lens manufacturing system. In accordance with a first aspect of the invention, article handling devices are located beneath a pre-cure station and a curing station of the system to move lens carriers within those stations. As a result of locating these devices beneath these stations, the desired movement of the carriers can be achieved without increasing the footprint of the station. Pursuant to a second aspect of the invention, a complete set of assemblies is provided for moving a multitude of lens carriers into, through, and out from the pre-cure station and the curing station. This set of assemblies accomplishes this movement in a completely automated, high speed, mass production basis. In accordance with a third aspect of the invention, the curing station is provided with an intelligent buffer. This buffer allows the lens carriers to accumulate in the curing station, and then discharges the carriers from the station in an ordered manner at the appropriate time. This enables the output or throughput of the curing station to be controlled or adjusted to accommodate changing conditions or circumstances occurring in the manufacturing system downstream of the curing station.
Abstract:
A method and apparatus for training a text classifier is disclosed. A supervised learning system and an annotation system are operated cooperatively to produce a classification vector which can be used to classify documents with respect to a defined class. The annotation system automatically annotates documents with a degree of relevance annotation to produce machine annotated data. The degree of relevance annotation represents the degree to which the document belongs to the defined class. This machine annotated data is used as input to the supervised learning system. In addition to the machine annotated data, the supervised learning system can also receive manually annotated data and/or a user request. The machine annotated data, along with the manually annotated data and/or the user request, are used by the supervised learning system to produce a classification vector. In one embodiment, the supervised learning system comprises a relevance feedback mechanism. The relevance feedback mechanism is operated cooperatively with the annotation system for multiple iterations until a classification vector of acceptable accuracy is produced. The classification vector produced by the invention is the result of a combination of supervised and unsupervised learning.