Abstract:
A query phrase may be automatically classified to one or more topics of interest (e.g., categories) to assist in routing the query phrase to one or more appropriate backend databases. A selectional preference query classification technique may be used to classify the query phrase based on a comparison between the query phrase and patterns of query phrases. Additionally, or alternatively, a combination of query classification techniques may be used to classify the query phrase. Topical classification of a query phrase also may be used to assist a search system in delivering auxiliary information to a user who entered the query phrase. Advertisements, for instance, may be tailored based on classification rather than query keywords.
Abstract:
A system for controlling a roller shade having a roller tube windingly receiving a shade fabric varies roller tube rotational speed for constant linear shade speed. The desired linear shade speed, roller tube diameter and shade fabric thickness and length are stored in a memory for use by a microprocessor. Preferably, the roller tube rotational speed is varied by the microprocessor depending on shade position determined by signals from Hall effect sensors. The microprocessor maintains a counter number that is increased or decreased depending on direction of rotation. Based on the counter number, the microprocessor determines shade position and a corrected rotational speed for the desired linear shade speed. Preferably, the microprocessor controls roller tube rotational speed using a pulse width modulated signal. The system may be used to control first and second roller shades having roller tubes of differing diameters or shade fabrics of varying thicknesses.
Abstract:
A dimmer circuit for providing AC power from an AC voltage source to an inductive lighting load disposed in series with the dimmer circuit, comprising: a bidirectional semiconductor switch having at least one control electrode provided with a control signal for controlling the amount of power provided to the load, the switch in normal operation being able to be controlled to block voltage in first and second opposite polarity half-cycles of the AC voltage source but in a failure mode being able to block the AC voltage source in only one polarity half-cycle of the AC voltage source and not being able to block the AC voltage source in the second opposite polarity half-cycle; a controller for the switch for determining if said failure mode of the switch occurs which can cause an asymmetry between the half-cycles delivered to the load and thus a DC voltage component to be delivered to the load; a power supply for supplying power to the controller and provided with power across the dimmer circuit; the controller controlling the switch if such failure mode occurs so as to: drive the switch into substantially full conduction during most of the half-cycle which the switch is able to control; and drive the switch into non-conduction for a brief duration of time during that same half-cycle so as to prevent a DC voltage component supplied to the load from exceeding a predetermined level below which excessive transformer heating does not occur, thereby minimizing overheating of the inductive load and enabling the power supply for the controller to be provided with sufficient voltage from the AC voltage source to enable the controller to continue to operate.
Abstract:
A system for controlling a roller shade having a roller tube windingly receiving a shade fabric varies roller tube rotational speed for constant linear shade speed. The desired linear shade speed, roller tube diameter and shade fabric thickness and length are stored in a memory for use by a microprocessor. Preferably, the roller tube rotational speed is varied by the microprocessor depending on shade position determined by signals from Hall effect sensors. The microprocessor maintains a counter number that is increased or decreased depending on direction of rotation. Based on the counter number, the microprocessor determines shade position and a corrected rotational speed for the desired linear shade speed. Preferably, the microprocessor controls roller tube rotational speed using a pulse width modulated signal. The system may be used to control first and second roller shades having roller tubes of differing diameters or shade fabrics of varying thicknesses.
Abstract:
In a soft contact lens manufacturing process, an injection molding machine (IMM) produces many thermoplastic injection molded front curve (FC) and back curve (BC) mold parts, each of which mold parts is subsequently used only once to mold a single soft contact lens. An inlay station with alignment assemblies and transfer tubes provide for the precise transfer to and alignment of the FC and BC molds in pallets during their transfer from the IMM to pallets on an assembly line in a high speed automated commercial production operation. A rotatable FC transfer arm and a rotatable BC transfer arm transfer the FC and BC molds from the IMM machine to the pallets in an inlay station. The precisely aligned transfer is provided by two alignment rods of an alignment assembly which pass through two alignment apertures in the pallet and then pass through two alignment apertures in one of the FC or BC alignment arms.
Abstract:
An automated means for hydrating a molded hydrophilic contact lens is provided in which a first robotic assembly removes a plurality of contact lens molds from a production line carrier, each of the lens molds having a contact lens adhered therein. The first robotic assembly transports the molds to a first staging area where the lens molds are sandwiched between a lens mold carrier and a top chamber plate to form a first hydration carrier. A first rotary transfer device then hands the first hydration carrier to a second robotic assembly which immerses the first hydration carrier in a hydration bath to hydrate the lens and to release the lens from the lens mold. While the lens is immersed in the hydration bath, each lens is transferred from its respective mold to a lens transfer means found within the top chamber plate. After a predetermined period of time, the second robotic assembly removes the first hydration carrier from the hydration bath and hands the hydration carrier off to a second rotary transfer device which rotates the first hydration carrier and aligns it for transfer to a third robotic assembly. The third robotic assembly then carries the top chamber plate and contact lenses through a series of steps in which the lens mold carrier and lens molds are removed from the top chamber plate. The lenses carried on the lens transfer means are then flushed and transported for assembly with a hydration base member to form a second hydration carrier for processing the lens in subsequent extraction stations. The second hydration carrier is then transported through a plurality of flushing or extraction stations wherein fresh deionized water is introduced into the hydration chambers at each hydration station to flush leachable substances from the hydration chamber. At each flushing station, fresh deionized water is introduced into the hydration chamber to remove previously extracted impurities and the products of hydrolysis. A final robotic dis-assembly device separates the top chamber plate and lens transfer means from the hydration base member, to provide fully hydrated lenses in a concave lens holding means ready for transfer to inspection and packaging stations.
Abstract:
An automated means for hydrating a molded hydrophilic contact lens is provided in which a first robotic assembly removes a plurality of contact lens molds from a production line carrier, each of the lens molds having a contact lens adhered therein. The first robotic assembly transports the molds to a first staging area where the lens molds are sandwiched between a lens mold carrier and a top chamber plate to form a first hydration carrier. A first rotary transfer device then hands the first hydration carrier to a second robotic assembly which immerses the first hydration carrier in a hydration bath to hydrate the lens and to release the lens from the lens mold. While the lens is immersed in the hydration bath, each lens is transferred from its respective mold to a lens transfer means found within the top chamber plate. After a predetermined period of time, the second robotic assembly removes the first hydration carrier from the hydration bath and hands the hydration carrier off to a second rotary transfer device which rotates the first hydration carrier and aligns it for transfer to a third robotic assembly. The third robotic assembly then carries the top chamber plate and contact lenses through a series of steps in which the lens mold carrier and lens molds are removed from the top chamber plate. The lenses carried on the lens transfer means are then flushed and transported for assembly with a hydration base member to form a second hydration carrier for processing the lens in subsequent extraction stations. The second hydration carrier is then transported through a plurality of flushing or extraction stations wherein fresh deionized water is introduced into the hydration chambers at each hydration station to flush leachable substances from the hydration chamber. At each flushing station, fresh deionized water is introduced into the hydration chamber to remove previously extracted impurities and the products of hydrolysis. A final robotic dis-assembly device separates the top chamber plate and lens transfer means from the hydration base member, to provide fully hydrated lenses in a concave lens holding means ready for transfer to inspection and packaging stations.
Abstract:
A query phrase may be automatically classified to one or more topics of interest (e.g., categories) to assist in routing the query phrase to one or more appropriate backend databases. A selectional preference query classification technique may be used to classify the query phrase based on a comparison between the query phrase and patterns of query phrases. Additionally, or alternatively, a combination of query classification techniques may be used to classify the query phrase. Topical classification of a query phrase also may be used to assist a search system in delivering auxiliary information to a user who entered the query phrase. Advertisements, for instance, may be tailored based on classification rather than query keywords.
Abstract:
A motorized shade control system includes electronic drive units (EDUs) having programmable control units directing a motor to move an associated shade in response to command signals directed to the control units from wall-mounted keypad controllers or from alternate devices or control systems connected to a contact closure interface (CCI). Each of the EDUs, keypad controllers and CCIs of the system is connected to a common communication bus. The system provides for initiation of soft addressing of the system components from any keypad controller, CCI or EDU. The system also provides for setting of EDU limit positions and assignment of EDUs to keypad controllers from the keypad controllers or CCIs. The system may also include infrared receivers for receiving infrared command signals from an infrared transmitter.
Abstract:
A convertible financial instrument provides incentives to holders to keep the instruments outstanding so that issuers maintain flexibility and control over the maturity date of the instrument and the manner in which it is settled. The instrument may provide issuers with the ability to deduct an amount for tax purposes that approximates the true economic cost of the financial instrument. The instrument may contain a provision calling for contingent payments (which may include, for example, contingent interest, preferred distributions, contingent principal, dividends, and other pay-outs) to the holder in some circumstances, which may be based on formulae calculations. For example, this may occur when the trading value of the convertible instrument exceeds a predetermined value such as, for example, a certain percentage of the accreted value of the convertible instrument, or, for example, another circumstance that may trigger a contingent payment may be when the price of another financial instrument (e.g., the underlying security, the reference security, etc.) is below, higher than, or equal to a pre-determined value.