Abstract:
An electrosurgical system includes an electrosurgical generator (1) including at least one source of radio frequency (RF) power, and a plurality of output connections (2, 3, 4), only one of the output connections at any one time being active in that it is able to receive radio frequency power from the source. The generator (1) includes selection means adapted to change the active output connection, and a controller adapted to control the supply of radio frequency power from the source to the active output connection. The system also includes a plurality of electrosurgical assemblies, each including an electrosurgical instrument (5, 6, 7) and a cable (8, 9, 10) connecting the electrosurgical instrument to one of the output connections (2, 3, 4). The electrosurgical instruments (5, 6, 7) each include a handswitch (17, 18, 19) adapted to send a signal to the generator (1) to change the active output connection. The selection means is such that a signal sent from the handswitch (17, 18, 19) of the active instrument (5, 6, 7) can cause the generator (1) to change the active output connection to a different output connection (2, 3, 4), but a signal sent from the handswitch of an instrument other than the active instrument does not immediately cause the selection means to change the active output connection to a different output connection.
Abstract:
A computing device, such as a desktop, laptop, tablet computer, a mobile device, or a computing device integrated into another device (e.g., an entertainment device for gaming, a television, an appliance, kiosk, vehicle, tool, etc.) is configured to determine user input commands from the location and/or movement of one or more objects in a space. The object(s) can be imaged using one or more optical sensors and the resulting position data can be interpreted in any number of ways to determine a command. Signal conditioning logic (or a programmable CPU) can be used to facilitate detection by performing at least some image processing in hardware before the image is provided by the imaging device, such as by a hardware-implemented ambient subtraction, infinite impulse response (IIR) or finite impulse response (FIR) filtering, background-tracker-based touch detection, or the like.
Abstract:
Certain aspects and embodiments of the present invention relate to manipulating elements to control an imaging device. According to some embodiments, the imaging device includes a memory, a processor, and a photographic assembly. The photographic assembly includes sensors that can detect and image an object in a viewing area of the imaging device. One or more computer programs can be stored in the memory to determine whether identifiable elements used in the manipulation exist. Manipulations of these elements are compared to stored manipulations to locate a match. In response to locating a match, one or more functions that correspond to the manipulation can be activated on the imaging device. Examples of such functions include the zoom and focus features typically found in cameras, as well as features that are represented as “clickable” icons or other images that are superimposed on the screen of the imaging device.
Abstract:
The invention relates to an adaptive Radio Frequency (RF) filter (11), which is particularly useful as an RF filter in Wireless Local Area Networks (WLAN's). As greater demands are placed on RF systems, for example in WLAN's in order to increase channel capacity by utilizing available bandwidth, corresponding demands are placed upon performance and tolerance of components used in FR circuits. An adaptive Radio Frequency (RF) filter for filtering first and second RF signals from an OFDM encoded carrier signal is provided, the adaptive RF filter comprises: a low-pass filter (102) configured to filter first and second RF signals, one from another, so as to provide a first RF output signal; the adaptive RF filter being tunable in response to one or more input signals, the at least one input signal being derived from a comparator (37,100), which compares the first RF output signal with a desired value for said first RF output signal, and provides a connection factor for varying a characteristic of the filter (102). An advantage of the invention is that it facilitates filter of two OFDM encoded RF signals, the first typically at 8.1 MHz and the second (unwanted) at 11.9 MHz, from a base-band signal, with a noise floor level of —55 dB or better. Another advantage is that the filter is able to self calibrate and is able to take into account fluctuations which may affect performance, for example thermal drift, and automatically trim its characteristics so as to compensate for these fluctuations.
Abstract:
An optical touch detection system may rely on triangulating points in a touch area based on the direction of shadows cast by an object interrupting light in the touch area. When two interruptions occur simultaneously, ghost points and true touch points triangulated from the shadows can be distinguished from one another without resort to additional light detectors. In some embodiments, a distance from a touch point to a single light detector can be determined or estimated based on a change in the length of a shadow detected by a light detector when multiple light sources are used. Based on the distance, the true touch points can be identified by comparing the distance as determined from shadow extension to a distance calculated from the triangulated location of the touch points.
Abstract:
A method for determining the alignment of a plurality of contacts in an electronic testing machine is disclosed. The contacts are swept over an electronic component taking a plurality of electrical readings. These electrical readings are charted against a desired orientation to determine alignment. Alignment can be corrected as necessary using an adjustment mechanism.
Abstract:
An electrosurgical system includes an electrosurgical generator (1) with a plurality of output connections (2, 3, 4), only one of the output connections at any one time being active in that it is able to receive radio frequency power. A plurality of electrosurgical assemblies, each including an electrosurgical instrument (5, 6, 7) and a cable (8, 9, 10) are connected to the generator (1) via the output connections. The electrosurgical assemblies each include indication means such as lamps (17, 18, 19), illuminating when that particular electrosurgical assembly is connected to the active output connection. A switch means, such as a footswitch (11) or handswitches (24, 27) on the instruments, send a signal to the generator to cause an RF waveform to be provided at the active output connection.
Abstract:
A process for reacting in a fluid bed reactor at least one oxidizable reactant with molecular oxygen in the presence of a catalytically active fluidized bed of solid particles. In the process a molecular oxygen-containing gas having an oxygen concentration greater than that of air is introduced into the fluidized bed while the fluidized bed is maintained in a turbulent regime. The process is suitable for oxidation, ammoxidation and carboxylation processes, including the production of maleic anhydride, acrylonitrile, ethylene, acetic acid and vinyl acetate.
Abstract:
A process for the conversion of synthesis gas to higher hydrocarbons by synthesis gas, at an elevated temperature and pressure, with a suspension of a particulate Fischer-Tropsch catalyst, in a system comprising at least one high shear mixing zone and a reactor vessel wherein the process comprises: (a) passing the suspension and the gaseous stream through the high shear mixing zone wherein the gaseous stream is broken down into gas bubbles and/or irregularly shaped gas voids; (b) discharging suspension having gas bubbles and/or irregularly shaped gas voids dispersed therein from the high shear mixing zone into the reactor vessel; and (c) maintaining the temperature of the suspension discharged into the reactor vessel at the desired reaction temperature by means of an internal heat exchanger positioned within the suspension in the reactor vessel. At least 5% of the exothermic heat of reaction is removed from the system by means of the internal heat exchanger. The remainder of the exothermic heat of reaction may be removed from the system by means of an external heat exchanger and/or through the introduction of a liquid coolant.
Abstract:
Process for converting synthesis gas to hydrocarbons which comprises contacting a gaseous stream comprising synthesis gas, at an elevated temperature and pressure, with a suspension comprising a particulate Fischer-Tropsch catalyst having a particle size in the range 5 microns to 500 microns, suspended in a liquid medium, in a system comprising at least one high shear mixing zone and a reactor vessel. The suspension and the gaseous stream is passed through the high shear mixing zone(s) wherein the gaseous stream is broken down into gas bubbles. The suspension having gas bubbles dispersed therein is discharged from the high shear mixing zone(s) into the reactor vessel, and suspension comprising the particulate Fischer-Tropsch catalyst suspended in the liquid medium and liquid hydrocarbon products is withdrawn from the reactor vessel and at least a portion of the suspension is recycled to the high shear mixing zone(s) via an external conduit at a flow rate of at least 10,000 m3 of suspension per hour. A side stream from the suspension flowing through the external conduit is taken and passed directly to a filtration unit.