Abstract:
An organometallic complex according to the present invention comprises a structure represented by the following general formula (1). In the formula, R1 to R5 are any one selected from the group consisting of hydrogen, a halogen element, an acyl group, an alkyl group, an alkoxyl group, an aryl group, a cyano group, and a heterocyclic group, Ar is an aryl group having an electron-withdrawing group or a heterocyclic group having electron-drawing group, and M is an element of Group 9 or an element of Group 10.
Abstract:
A light-emitting element is provided which has a light-emitting layer between a first electrode and a second electrode, where the light-emitting layer has a first layer and a second layer; the first layer contains a first organic compound and a third organic compound; the second layer contains a second organic compound and the third organic compound; the first layer is provided to be in contact with the second layer on the first electrode side; the first organic compound is an organic compound with an electron transporting property; the second organic compound is an organic compound with a hole transporting property; the third organic compound has an electron trapping property; and light emission from the third organic compound can be obtained when voltage is applied to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode.
Abstract:
A material which can emit phosphorescence is disclosed. Further, a light-emitting element having good chromaticity is disclosed. An embodiment of the present invention is an organometallic complex including a structure as represented by the general formula (1): wherein R1 represents an alkyl group having 1 to 4 carbon atoms; each of R2 to R5 represents any one of hydrogen, a halogen element, an acyl group, an alkyl group, an alkoxyl group, an aryl group, a cyano group, and a heterocyclic group; Ar represents an aryl group or a heterocyclic group, preferably, an aryl group having an electron withdrawing group or a heterocyclic group having an electron withdrawing group; and M represents a Group 9 element or a Group 10 element. By virtue that the Ar has an electron withdrawing group, an organometallic complex which emits phosphorescence with higher emission intensity can be obtained.
Abstract:
A layer included in an electroluminescent element is required to be thickened to optimize light extraction efficiency of the electroluminescent element and to prevent short-circuit between electrodes. However, in a conventional element material, desired light extraction efficiency cannot be accomplished since drive voltage rises or power consumption is increased as the element material is thickened. A composite is formed by mixing a conjugated molecule having low ionization potential and a substance having an electron-accepting property to the conjugated molecule. A composite layer included in an element is formed using the composite as an element material. The composite layer is arranged between a first electrode and a light emitting layer or between a second electrode and a light emitting layer. The composite layer has high conductivity; therefore, drive voltage does not rise even if a film thickness is increased. Thus, an electroluminescent element which can prevent short-circuit of an electrode can be provided.
Abstract:
To provide a novel organometallic complex, and light emitting elements, light emitting devices, and electronic devices which include the organometallic complex. In addition, to provide a composition in which the organometallic complex is dissolved and to provide a method for manufacturing light emitting elements using the composition. An organometallic complex has high solubility in a solvent. In the organometallic complex, the ligand including a pyrazine skeleton is bound to an atom belonging to Group 9 (Co, Rh, or Ir) or an atom belonging to Group 10 (Ni, Pd, or Pt). In addition, the light emission efficiency is high. Therefore, the organometallic complex is preferably used for manufacturing a light emitting element.
Abstract:
The present invention provides a substance that is capable of emitting red phosphorescence which is closer to a chromaticity coordinate for red of NTSC standard. The present invention provides an organometallic complex represented by a general formula (1). In the formula (1), R1 to R3 are individually either hydrogen, a halogen element, an acyl group, an alkyl group, an alkoxyl group, an aryl group, a cyano group, or a heterocyclic group. At least of R1 to R3 represents an electron withdrawing group. M is one of an element of Group 9 and an element of Group 10, and n=2 when the M is an element of Group 9 while n=1 when the M is an element of Group 10. In such an organometallic complex, red phosphorescence with higher visibility which is closer to a chromaticity coordinate for red of NTSC standard can be emitted.
Abstract:
The light emitting element includes a first electrode and a second electrode, between which a light emitting layer, a hole transporting layer provide in contact with the light emitting layer, an electron transporting layer provided in contact with the light emitting layer, and a mixed layer provided between the electron transporting layer and the second electrode. The mixed layer includes an electron transporting substance and a substance showing an electron donating property with respect to the electron transporting substance. The light emitting layer includes an organometallic complex represented in General Formula (1) and a host. R1 and R2 each represent an electron-withdrawing substituent group. R3 and R4 each represent any of hydrogen or an alkyl group having 1 to 4 carbon atoms. L represents any of a monoanionic ligand having a beta-diketone structure, a monoanionic bidentate chelating ligand having a carboxyl group, or a monoanionic bidentate chelating ligand having a phenolic hydroxyl group.
Abstract translation:发光元件包括第一电极和第二电极,在该第一电极和第二电极之间,发光层,与发光层接触的空穴传输层,与发光层接触设置的电子传输层,以及混合层 设置在电子传输层和第二电极之间。 该混合层包括电子传输物质和相对于电子传输物质显示给电子性的物质。 发光层包括通式(1)表示的有机金属络合物和主体。 R 1和R 2各自表示吸电子取代基。 R 3和R 4各自表示氢或具有1至4个碳原子的烷基中的任何一个。 L表示具有β-二酮结构的单阴离子配体,具有羧基的单阴离子二齿螯合配体或具有酚羟基的单阴离子二齿螯合配体中的任一种。
Abstract:
An organometallic complex according to the present invention comprises a structure represented by the following general formula (1). In the formula, R1 to R5 are any one selected from the group consisting of hydrogen, a halogen element, an acyl group, an alkyl group, an alkoxyl group, an aryl group, a cyano group, and a heterocyclic group, Ar is an aryl group having an electron-withdrawing group or a heterocyclic group having electron-drawing group, and M is an element of Group 9 or an element of Group 10.
Abstract:
Organometallic complexes represented by chemical formula 1 are synthesized. In chemical formula 1, R1 to R5, are individually a hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, an acyl group, a nitro group, a cyano group, an amino group, a dialkylamino group, a diarylamino group, a vinyl group, an aryl group, or a heterocyclic group. Each pair of R1 and R2, R2 and R3, and R4 and R5 may be bonded each other to form aromatic rings. Y is a heterocyclic group containing nitrogen atoms as hetero atoms. M is atoms of group 9 in the periodic table or atoms of group 10 in the periodic table. When the M is atoms of group 9 in the periodic table, n=2. When the M is atoms of group 10 in the periodic table, n=1. L is a monoanionic bidentate chelate ligand having a beta diketone structure, a monoanionic bidentate chelate ligand having a carboxyl group, or a monoanionic bidentate chelate ligand having a phenol hydroxyl group.
Abstract:
The organometallic complex, which is a novel substance, is represented by General Formula (G1) or General Formula (G2). In General Formula (G1), R1 represents an alkyl group having 1 to 4 carbon atoms and R2 to R10 each represents hydrogen or an alkyl group having 1 to 4 carbon atoms. M represents a Group 9 element or a Group 10 element. When M is a Group 9 element, n is 3, and when M is a Group 10 element, N is 2. In General Formula (G2), R11 represents an alkyl group having 1 to 4 carbon atoms and R12 to R20 each represents hydrogen or an alkyl group having 1 to 4 carbon atoms. M represents a Group 9 element or a Group 10 element. When M is a Group 9 element, n is 3, and when M is a Group 10 element, N is 2.